ERL Progress: The KR Channel Cases

Richard Mellitz, Samtec

Feb 25, 2020

Agenda

- □ Review ERL equations
- □ Simplify parameters
- Select interesting channels
- □ Use very low loss delay to determine ERL-COM tracking
- □ Effects of DFE and package length
- \Box N_{bx} analysis
- Recommendation
- Next steps

ERL equations

$$G_{rr}(t) = \begin{cases} 0 & t < T_{fx} \\ \rho_x(1+\rho_x) \exp\left(-\frac{\left[(t-T_{fx})f_b - (N_{bx}+1)\right]^2}{(N_{bx}+1)^2}\right) & T_{fx} \le t < T_{fx} + \frac{N_{bx}+1}{f_b} \\ 1 & t \ge T_{fx} + \frac{N_b+1}{f_b} \end{cases}$$

 $R_{eff}(t) = PTDR(t) \times G_{rr}(t) \times G_{loss}(t)$

- Most parameters original had meaning
 - N_{bx} Equalizer impact in UI based COM degradation
 - T_{fx} Test fixture delay in seconds
 - β_x Related to loss of package
 - ρ_x related to reflection in the gated region
- But are best found with fitting and correlation
- □ Then once locked down
 - ERL_{mim} may be determined
 - So that really bad reflections are not allowed based on COM delta compared to the reference package

$$G_{loss}(t) = \begin{cases} 0 & t < T_{fx} \\ \frac{\beta_x}{f_b}[(t - T_{fx})f_b - (N_{bx} + 1)]}{20} & T_{fx} \le t < T_{fx} + \frac{N_{bx} + 1}{f_b} \\ 1 & t \ge T_{fx} + \frac{N_{bx} + 1}{f_b} \end{cases}$$

For now let's consider N_{bx}, ρ_x , β_x spec tuning parameters

$$r_{r}(t) = \begin{cases} 0 & t < T_{fx} \\ \rho_{x}(1+\rho_{x}) \exp\left(-\frac{\left[(t-T_{fx})f_{b}-(\frac{N_{bx}}{h}+1)\right]^{2}}{(N_{bx}+1)^{2}}\right) & T_{fx} \le t < T_{fx} + \frac{N_{bx}+1}{f_{b}} \\ 1 & t \ge T_{fx} + \frac{N_{b}+1}{f_{b}} \end{cases} \\ \\ G_{loss}(t) = \begin{cases} 0 & t < T_{fx} \\ 10^{\frac{\beta_{s}}{f_{b}}[(t-T_{fx})f_{b}-(\frac{N_{bx}}{h}+1)]}{20} & T_{fx} \le t < T_{fx} + \frac{N_{bx}+1}{f_{b}} \\ 1 & t \ge T_{fx} + \frac{N_{bx}+1}{f_{b}} \\ 1 & t \ge T_{fx} + \frac{N_{bx}+1}{f_{b}} \end{cases}$$

- Setting β_x to zero simplifies the problem by forcing G_{loss} to 1
- One more simplification is to set ρ_x to 0.618 which smooths out the gating function at the end of the gated region

Moving forward

- Is N_{bx} and the gated weighting yellow line shape in the graph at right sufficient to:
 - Correlate ERL to COM
 - Allow an ERL to limit Δ COM
 - Eliminate design with extreme reflections

Let's see

First: Choose channels with reflections near TPO and with COM \sim 3 dB (use PTDR)

File Key: Previous slide

□ Larger reflections

- R71 heck_100GEL_85ohm_hlh_01_011718--BP_2conn_85ohm_30dB_HzLzHz_thru: COM 3.0 dB
- R68 Cable_BKP_28dB_0p575m_more_isi--Cable_BKP_28dB_0p575m_more_isi_thru: COM 3.5 dB
- Smaller reflections
 - R48 kareti_3ck_01_1118_ortho--OAch4_t:Larger reflections: COM 2.95 dB

Use delay line to determine impact of the position of reflection near the test point tp0

- □ Add 0 to 90 UI of delay to channel who has large reflection around TP0
- Hypothesis is
 - COM would get worse as lossless delay gets longer
 - COM would levels out when delay gets even longer
 - Channels with small reflections around TPO would show less impact from added delay
- □ If the Hypothesis is correct
 - This would be basis for channel the $\rm N_{bx}$ value for ERL gating

Illustration delaying PTDR (n_{bx}=0) for 0, 20, & 40 UI Delay

Note: TDR delay is twice physical added delay

Clause 163 (KR) COM vs added transmission line delays (UI)

COM vs added transmission line delay (UI) for 31 mm and 12 mm package

COM comparison with DFE show gating region makes some sort of sense

Shorter DFE shows less impact from reflection delay
Longer DFE shows more impact fro, reflection delay

So Far

If channels have large reflections near TPO they interact with package

- □ Longer packages interact for longer time after TPO
- COM is effected by the receiver equalizer length and position of reflections.
- □ If the reflection at TPO are within the "DFE reach", COM is better.
 - If delayed reflections are outside the "DFE reach", COM is worse and more or less unaffected by the delay

 \Box Hypothesis: N_{bx} should be twice the equalizer reach

Added delay vs COM and ERL N_{bx}

Does this correlation to $N_{\rm bx}$ hold if a wider range of package parameters are chosen

Cd (ff)	Cp (ff)	Zc	(ohms)	Loss scale	Zc1 (ohms)	Zpx1 (mm)	Zpx2 (mm)	Zp (mm)	Zp1 (mm)
	90	0	65.625	0.5	67.875	4	0	Zpx1+Zpx2	0
	120	90	87.5	1	. 90.5	11.5	6.5		1.8
	150	180	109.375	1.5	113.125	19	13		4.8

Yes Package cases DOE case03 & 25 more vs. UI delay 4.5 Smooth(DOE case03) —Smooth(DOE case47) -Smooth(DOE case05) -Smooth(DOE case53) -Smooth(DOE case07) -Smooth(DOE case55) Smooth(DOE case09) -Smooth(DOE case56) Smooth(DOE case11) -Smooth(DOE case57) Smooth(DOE case14) -Smooth(DOE case58) -Smooth(DOE case15) 4.0 -Smooth(DOE case18) -Smooth(DOE case23) -Smooth DOE case26 Smooth(DOE case35 DOE case03 & 25 more . -Smooth(DOE case36) ERL11 CH1 (dB) N_bx=0 & 15 more vs. UI added delay -Smooth DOE case37 Smooth(DOE case38 14 ---Smooth(ERL11 CH1 (dB) N_bx=0) 16 Smooth(DOE case41) ---Smooth(ERL11 CH1 (dB) N_bx=4) 8 ---Smooth(ERL11 CH1 (dB) N bx=8) Smooth(DOE case42) ERL11 CH1 (dB) N_bx=0 15 -Smooth(ERL11 CH1 (dB) N_bx=12) Smooth(DOE case45) COM (dB) ---Smooth(ERL11 CH1 (dB) N_bx=16) -Smooth(DOE case46) -Smooth(ERL11 CH1 (dB) N bx=20 14 -Smooth(ERL11 CH1 (dB) N bx=24) mor Smooth(ERL11 CH1 (dB) N bx=28) 13 -Smooth(ERL11 CH1 (dB) N_bx=32) -Smooth(ERL11 CH1 (dB) N bx=36) -Smooth(ERL11 CH1 (dB) N bx=40) 12 ---Smooth(ERL11 CH1 (dB) N bx=44) -Smooth (ERL11 CH1 (dB) N_bx=48) 11 ---Smooth(ERL11 CH1 (dB) N bx=52) ---Smooth(ERL11 CH1 (dB) N_bx=56) 10 -Smooth(COM1 (dB) (no RL)) 2.5 3.75 (T) 3.70 0 3.65 (B) 3.60 3.55 ₩ 3.50 3.45 2.0 3.40 MOMO 3.35 20 40 60 80 100 0 UI delay UI added delay

Hypothesis: ERL of the package varies inversely to $N_{\rm bx}$

Variation on Reference package are limited to 15 dB ERL

Recommend: For Channels and Packages

□ Set β_x =0 □ Set ρ_x =.618 □ Set N_{bx}= 48

Kappa (κ) may be used to determine impact of reflections (from healey 3ck 01a 0120)

· The transfer function from the transmitter input to the receiver output is the following

First estimate: $ERL_{min} = 10 dB$

ERL is correlated to Delta COM

Better ERL means less COM variability at the receiver

Recommend: ERL_{min}

- □ Channel: 10 dB
- □ Package: 15 dB

Next steps look at packages

- □ Lock down channel ERL parameters
- \Box Do similar work for package to see if N_{bx} tracks as well as
- □ Used wider range (+/- 25%) of package parameters

Additional backup data

COM spreadsheet used

Table 93A-1 parameters				I/O control			Table 93A–3 parameters		
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	0	logical	package_tl_tau	6.141E-03	ns/mm
Delta_f	0.01	GHz		RESULT_DIR	.\results\100G_KR	_Baseline_{date}	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
C_d	[1.2e-4 1.2e-4]	nF	[TX RX]	SAVE_FIGURES	1	logical	benart	benartsi_3ck_01_0119 & mellitz_3ck_01_0119	
L_s	[0.12, 0.12]	nH	[TX RX]	Port Order	[1 3 2 4]		Table 92–12 parameters		;
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]	RUNTAG	KR_eval_		Parameter	Setting	
z_p select	[12]		[test cases to run]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]		Operational		board_tl_tau	5.790E-03	ns/mm
z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	100	Ohm
z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	ERL Pass threshold	8	dB	z_bp (TX)	110.3	mm
z_p (RX)	[12 29; 1.8 1.8]	mm	[test cases]	DER_0	1.00E-04		z_bp (NEXT)	110.3	mm
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	110.3	mm
R_0	50	Ohm		FORCE_TR	1	logical	z_bp (RX)	110.3	mm
R_d	[50 50]	Ohm	[TX RX]				C_0	[0.29e-4]	nF
A_v	0.415	V		TDR	and ERL options		C_1	[0.19e-4]	nF
A_fe	0.415	V		TDR	1	logical	Include PCB	0	logical
A_ne	0.608	V		ERL	1	logical		Floating Tap Control	
L	4			ERL_ONLY	0	logical	N_bg	3	0 1 2 or 3 groups
M	32			TR_TDR	0.01	ns	N_bf	3	taps per group
filter and Eq			Ν	3000		N_f	40	UI span for floating taps	
f_r	0.75	*fb		beta_x	0.0000E+00		bmaxg	0.05	max DFE value for floating taps
c(0)	0.54		min	rho_x	0.25		B_float_RSS_MAX	0.02	rss tail tap limit
c(-1)	[-0.34:0.02:0]		[min:step:max]	fixture delay time	[00]	[port1 port2]	N_tail_start	25	(UI) start of tail taps limit
c(-2)	[0:0.02:0.12]		[min:step:max]	TDR_W_TXPKG	0		ICN parameters		
c(-3)	[-0.06:0.02: 0]		[min:step:max]	N_bx	12	UI	f_v	0.723	*Fb
c(1)	[-0.2:0.05:0]		[min:step:max]	Re	ceiver testing		f_f	0.723	*Fb
N_b	12	UI		RX_CALIBRATION	0	logical	f_n	0.723	*Fb
b_max(1)	0.85			Sigma BBN step	5.00E-03	V	f_2	39.844	GHz
b_max(2N_b)	[0.3 0.2*ones(1,10)]			Noise, jitter		A_ft	0.600	V	
g_DC	[-20:1:0]	dB	[min:step:max]	sigma_RJ	0.01	UI	A_nt	0.600	V
f_z	21.25	GHz		A_DD	0.02	UI	heck_3ck_03b_0319	Adopted Mar 2019	kasapi_3ck_02_1119
f_p1	21.25	GHz		eta_0	8.2E-09	V^2/GHz	walker_3ck_01d_0719	Adopted July 2019	Adopted Nov 2019
f_p2	53.125	GHz		SNR_TX	32.5	dB	result of R_d=50		under consideration
g_DC_HP	[-6:1:0]		[min:step:max]	R_LM	0.95		benartsi_3ck_01a_0719	no used for KR	01-2020 Interim
f_HP_PZ	0.6640625	GHz					mellitz_3ck_03_0919		

Example of added delay parameters (2 UI steps)

param.z_bp_tx	param.z_bp_fext	param.z_bp_rx	param.z_bp_next	param.brd_gamma0_a1_a2
	0	0	0	0 [0 3.8206e-08 9.5909e-09]
6.5020826	98	0	0	0 [0 3.8206e-08 9.5909e-09]
13.00416	54	0	0	0 [0 3.8206e-08 9.5909e-09]
19.50624	81	0	0	0 [0 3.8206e-08 9.5909e-09]
26.008330	79	0	0	0 [0 3.8206e-08 9.5909e-09]
32.510413	49	0	0	0 [0 3.8206e-08 9.5909e-09]
39.012496	19	0	0	0 [0 3.8206e-08 9.5909e-09]
45.514578	89	0	0	0 [0 3.8206e-08 9.5909e-09]
52.016661	59	0	0	0 [0 3.8206e-08 9.5909e-09]
58.518744	29	0	0	0 [0 3.8206e-08 9.5909e-09]
65.020826	98	0	0	0 [0 3.8206e-08 9.5909e-09]
71.522909	68	0	0	0 [0 3.8206e-08 9.5909e-09]
78.024992	38	0	0	0 [0 3.8206e-08 9.5909e-09]
84.527075	08	0	0	0 [0 3.8206e-08 9.5909e-09]
91.029157	78	0	0	0 [0 3.8206e-08 9.5909e-09]
97.531240	48	0	0	0 [0 3.8206e-08 9.5909e-09]
104.03332	32	0	0	0 [0 3.8206e-08 9.5909e-09]
110.53540	59	0	0	0 [0 3.8206e-08 9.5909e-09]
117.03748	86	0	0	0 [0 3.8206e-08 9.5909e-09]
		•		
		•		