TRANSMIT EQUALIZER STEP SIZE SPECIFICATIONS (COMMENTS \#62, \#63, \#74, \#10249)

Adee Ran, Intel

March 2020

Background

- Tx equalization maximum step size specification was 5\% in 50G electrical PMDs (clauses 136, 137, also annex 120D)
- c(-2) was specified as 2.5\%.
- In 802.3ck:
- Following hidaka 3ck adhoc 01120518 and sun 3ck adhoc 01a 120518 all analysis assumed a 2% step size for $c(-3)$ through $c(0)$, and this value was included in the baseline proposal heck 3ck 03b 0319.
- 5% for c(+1)
- The 2\% step size can create an additional burden on DAC-based transmitters. Power impact estimated as $\sim 0.5 \mathrm{pJ} / \mathrm{bit}$.
- In ran 3ck adhoc 01021920 we have shown that step size has small and very irregular effect on COM results.
- Comments \#62, \#63, \#74, \#10249 against D1.1 address Tx equalization step sizes.

Goals of this presentation

- In ran 3ck adhoc 01021920 it was stated that "Moving from 2.5\% to 2\% requires an additional DAC bit, otherwise some steps will have no measurable effect."
- Feedback received suggested that the additional bit may be required only in digital calculations, and not necessarily in the DAC, by rounding the calculated FFE output to 7 bits.
- The claim about "no measurable effect" was indeed incorrect.
- Rounding will be discussed in the following (spoiler: possible, but with increased Tx noise).
- Other comments suggest that having a 5% step size for $c(+1)$ alone does not benefit Tx design and can create unexpected complexity for optimization algorithms.
- This will be explained.

Possible designs choices

To meet a 2.5% step size specification

- 7-bit integer 2-tap FFE calculation can work as follows:
- Input is $\{-3,-1,+1,+3\}$
- Coefficients are 0:0.5:21 (42 values) for $\mathrm{c}(0)$, and $-5: 0.5: 0$ (11 values) for $\mathrm{c}(-1)$
- Normalized step size is $1 / 42=2.38 \%$
- Output range is $21^{*} 3-21^{*}(-3)=126$
- Output is shifted to an unsigned range of 0 to 126 (so the value 63 corresponds to zero differential output)

To meet a 2% step size specification

- 8-bit integer FFE calculation is required:
- Input is $\{-3,-1,+1,+3\}$
- Coefficients are 0:0.5:42.5 (85 values) for c(0), and -10:0.5:0 (21 values) for c(-1)
- Normalized step size is $1 / 85=1.18 \%$
- Output range is $42.5^{*} 3-42.5^{*}(-3)=255$
- Output is shifted to an unsigned range of 0 to 255 (so the value 127.5 corresponds to zero differential output)

Results of 7-bit design

- Outputs for different coefficient combinations:

$c(-1)$	$c(0)$	NRZ outputs	PAM4 outputs
0	21	$0 ; 126$	$0 ; 42 ; 84 ; 126$
-0.5	20.5	0,$3 ; 123,126$	$0,1,2,3 ; 41,42,43,44 ; 82,83,84,85 ; 123,124,125,126$
-2.5	18.5	0,$15 ; 111,126$	$0,5,10,15 ; 37,42,47,52 ; 74,79,84,89 ; 111,116,121,126$

Results of 8-bit design

- Outputs for different coefficient combinations:

$c(-1)$	$c(0)$	NRZ outputs	PAM4 outputs
0	42.5	$0 ; 255$	$0 ; 85 ; 170 ; 255$
-0.5	42	0,$3 ; 252,255$	$0,1,2,3 ; 84,85,86,87 ; 168,169,170,171 ; 252,253,254,255$
-5	37.5	0,$6 ; 249,255$	$0,10,20,30 ; 75,85,95,105 ; 150,160,170,180 ; 225,235,245,255$

What if output DAC is 7 bits?

With 7-bit calculation

- FFE calculation is fed directly to DAC
- Pure linear system, no additive noise
- Equalization control is more coarse than with 8 bits
- But, as we have shown, with the Rx adaptive equalization the result may actually be better

With 8-bit calculation

- Outputs have to be divided by 2
- Problem: some outputs are even, some are odd
- Truncation error is either 0 or 1 LSB depending on input sequence \rightarrow additive quantization noise
- With RMS $=\frac{1}{\sqrt{2}}$ LSB, effect on SNDR is small - but this quantization noise can't be mitigated by the Rx
- More refined equalization control is not necessarily beneficial
- More expensive digital calculations

What about $\mathrm{c}(+1)$?

- If the max step size is $>2 x$ larger than the rest, implementations may actually apply double steps
- This creates complications for receivers trying to optimize Tx equalization
- Suppose the receiver wants to sweep possible values of $c(+1)$ starting from preset 1:
- Prior to decrementing c(1), c(0) must be decremented
- In the Tx (unlike COM calculation) c(0) is not automatically determined from other coefficients
- If step sizes are the same, one decrement of $c(+1)$ requires one decrement of $c(0)$
- If $c(1)$ has $2 x$ step size, one decrement of $c(+1)$ requires two decrements of $c(0)$
- Step sizes can vary even more... although there is no real design benefit.
- The Rx has no way to tell how the Tx is implemented
- Uncertainty exists regardless of the "search" algorithm.
- Planning for all possible combinations is difficult; validation is a nightmare.
- This could also be done with uniform step size limits... but is less "tempting"
- We should add a recommendation to have uniform step sizes

Summary

- Current max step size spec of 2\% is overly aggressive
- For a digital implementation, requires at least 8-bit calculations, if not 8-bit DAC
- Changing to max 2.5 \% would enable full 7 -bit design with negligible impact (if any) on Rx
- Finer steps have no real benefit, and cost power
- COM grid is not necessarily related, but run time can be reduced by changing to 2.5\%
- Allowing $c(+1)$ to have larger steps creates unexpected complexity in Rx optimization - COM grid is not related; can stay with a larger step to reduce run time
- Recommended changes in D1.1 \rightarrow D1.2:
- In transmitter characteristics
- Use uniform step size specs for all taps
- Change absolute step size spec to min 0.005 and max 0.025
- Add a recommendation to use nominally equal step sizes, to enable simple "step counting" logic
- Use editorial license
- In COM
- Change search step to 2.5% for all precursor taps
- Apply the above for clause 162, clause 163, and annex 120G

BACKUP

Results

In both cases, COM vs. step size trend is very small in all channels
Effect of 2% to 2.5% is between $\sim 0.05 \mathrm{~dB}$ (for low COM channels) and 0.13 dB (for the high COM channel)
Results are very "noisy" and inconclusive even at relatively large steps (R^{2} maximum value was only ~ 0.75; most were much worse)

What was the 2% recommendation based on?

TX Resolution Impact

DFE vs [CM]DFE

Source: sun 3ck adhoc 01a 120518 Slide 8

FFE vs [CM]FFE

$>2.5 \%$ (CDFE and CFFE) are often much worse than 1.5\% (DFE and FFE)
$>2.0 \%$ (MDFE and MFFE) are close to 1.5% (DFE and FFE)
CrędO゙

Digging into the data

Full data set provided in hidaka 3ck adhoc 02120518 to enable further analysis

Same, excluding the "AZ1" and "AZ2" Data CDFE0.85
 zambell_100GEL_01a_0318.pdf zambell_3ck_01_1118.pdf

Coarse DFE (0.25\%) vs. medium DFE (0.2\%) CDFE0. 85

16	AZ1	Orthogonal Backplane Channel
$\mid 89-115$	AZ2	Measured Orthogonal Backplane with Varied Impedances

Source: sun 3ck adhoc 01a 120518 slide 4

Eventually we chose a subset of channels for analysis

The Highlighted Channels

Contribution	Channel	
heck 3ck 011118	28dB Cabled Backplane/Cable_BKP_28dB_Op575m_more_isi	"AZ" channels not in the list
	16dB Cabled Backplane/Cable_BKP_16dB_Op575m_more_isi	
$\underline{\text { mellitz 3ck adhoc } 02081518}$		
tracy 3ck 010119	Traditional Backplane Channels/Std_BP_12inch_Meg7	
	Orthogonal Backplane Channels/DPO_IL_12dB	
kareti 3ck 01a 1118	Measured Orthogonal Backplane Channels/OAch4	
	Measured Orthogonal Backplane Channels/Och4	
	Measured Cabled Backplane Channels/CAch3_b2	
	Measured Traditional Backplane Channels/Bch2_a7p5_7	

Source: kochuparambil 3ck 01c 0119 slide 5

Tap Values By Channel

Tap Values By Channel

From ran 3ck adhoc 01021920

31/29mm Tx/Rx Package

