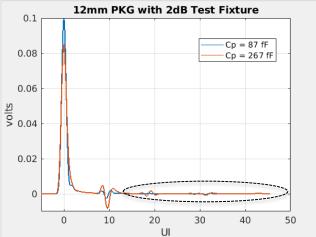
Revisit ISI_RES Specification for 100Gbase CR

Tobey P.-R. Li, Mau-Lin Wu MediaTek

For IEEE 802.3ck Ad-Hoc

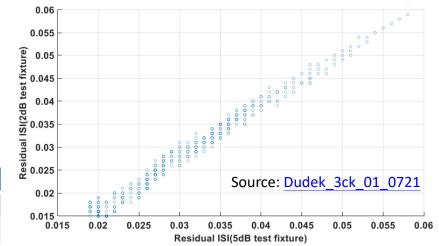
P802.3ck


Outlines

- Background
- TX Specifications: KR vs CR
- Feasibility of Current Np & ISI_RES Values
- Conclusion & Proposal

Background

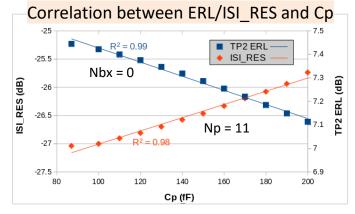
- <u>Dudek_3ck_adhoc_01_0428</u> & <u>Dudek_3ck_01_0521</u> showed that the transmitters with similar dERL, SNDR, dRpeak, and dVf have very different system performance
 - E.g., existing KR spec allowed a 12mm package with Cp=0.267pF to pass the TX specifications
- In <u>Dudek_3ck_01_0721</u>, it was shown that energy outside the main pulse can interact with reflections in the channel
 - For high Cp case, more DFE taps or banks of floating taps are required than the current KR reference RX has
 - Additional ISI_RES spec was proposed for 802.3ck
 KR to differentiate between these transmitters



Background

- According to draft 3.0 comment #237, ISI_RES with max value of -30dB was added to CR specification based on
 - <u>Dudek_3ck_01_0721</u> showed that residual ISI won't affected by test fixture (TF) loss
 - 1 dB gap to distinguish Pmax difference between KR & CR

	TX SNDR spec (Np = 200)	RES_ISI spec (Np = 11)
KR	32.5	-31
CR	31.5	-30

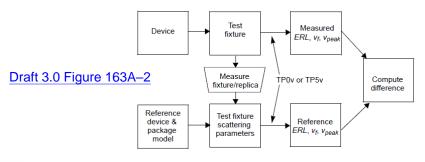

Necessity of ISI_RES Spec?

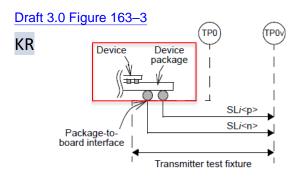
- Types of transmitter ERL spec
 - KR (TPOv): difference between measured and reference values
 - CR (TP2): specific ERL value
- Definitions of ERL & ISI_RES are kind of similar
 - Transmitter specifications at TP2

	Parameters
ERL	Nbx = 0
ISI_RES	Np = 11

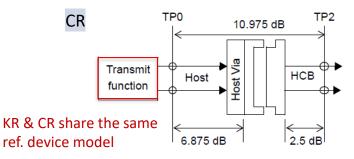
- ERL under Nbx = 0 is sufficient to cover the reflection issue
 - Correlation between ERL and Cp is strong
 - Different Cp values represent different reflection levels

Table 162–13—Transmitter and receiver ERL parameter values Parameter Symbol Value Units Transition time associated with a pulse Tr 0.01 ns Incremental available signal loss factor βx 0 GHz Permitted reflection from a transmission line external to the device under test 0.618 _ ρx Length of the reflection signal Ν 800 UI Equalizer length associated with reflection signal Nhr 0 UI Tukey window flag tw


^{*} TP0-TP2: "C2M__Z100_IL12_WC-BOR_H_L_H_THRU.s4p", mellitz_3ck_01_0518_C2M

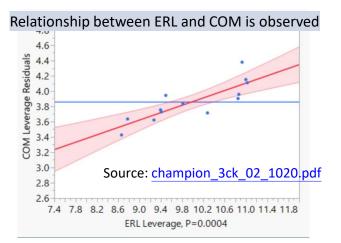

P802.3ck

TX specifications: KR vs CR (1/2)


- KR specification at TPOv mainly defines the difference between measured and reference values of transmitter
 - wu_3ck_adhoc_01_093020 & li_3ck_adhoc_01_063021 evaluated TPOv dERL value based on the variations of Z_p, Z_c, & R_d
 - <u>Dudek_3ck_01_0721</u> proposed additional ISI_RES spec to guarantee the whole link performance
- Recall KR TX measurement method

KR TX TF & test points

Draft 3.0 Figure 162A-3



P802.3ck

TX specifications: KR vs CR (2/2)

- TP2 ERL specifies the reflections from TX device to TP2
 - – ERL calculated based on Nbx = 0 → ISI_RES spec & TX ERL spec overlapping
 - Unlike KR, the existence of transition vias & connector within TP0-TP2 makes large Cp relatively less dominated
- CR ERL value determined based on the comprehensive analysis of
 - Published channels that representative of 100G host designs
 - Relationship between ERL and COM
 - Please also refer to <u>kochuparambil_3ck_03b_1020</u>, <u>champion_3ck_02_1020.pdf</u>, and draft 1.3 Comment #3 & #114 for details
 - \rightarrow ISI_RES spec is unnecessary for 802.3ck CR
- Option A: Remove ISI_RES specification from 802.3ck CR (Table 162.10)

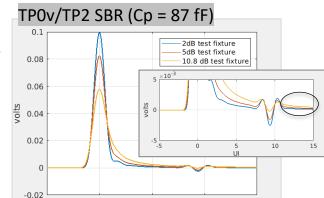
	KR	CR
Effective return loss (dB)	dERL > -3	ERL > 7.3
Steady-state voltage (V)	dVf >0	0.387 < Vf < 0.6
Linear fit pulse peak ratio	<mark>d</mark> Rpeak > 0	Rpeak > 0.397

Feasibility of Current Np & ISI_RES Values

• Very different channel characteristics between TPO-TPOv & TPO-TP2

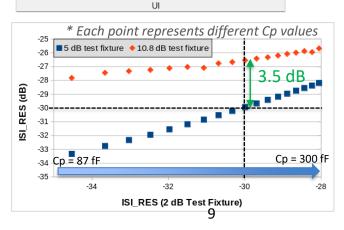
	TX SNDR spec (Np = 200)	RES_ISI spec (Np = 11)	TF loss (dB)	TX ERL spec (dB)	
KR	32.5	-31	1.7-5	dERL > -3	
CR	31.5	-30	< 10.975	ERL > 7.3	

- From the perspective of TF loss
 - For Np = 11, ~3.5 dB residual ISI caused by TF loss
 - Np > 11 & ISI_RES > -30 dB are required to distinguish residual ISI from TF loss & reflection
- From the perspective of reflection
 - Channel characteristics of TPO-TP2 make ISI_RES more complicated to be specified
 - ISI_RES will be affected by not just TF loss but also impedance discontinuities within TF
 - Change Np = $11 \rightarrow 18 \& ISI_{RES} (max) = -30 \rightarrow -29 dB$


KR vs CR: from the Perspective of IL

- Experiments for evaluating TF loss impacts
 - Zp = 12 mm
 - Cp = [87 100:10:300] fF
 - Other parameters shown in appendix
- Energy outside main cursor caused by TF loss will let CR suffer severe fitted error

	TX SNDR spec (Np = 200)	RES_ISI spec (Np = 11)	TF loss (dB)
KR	32.5	-31	1.7-5
CR	31.5	-30	< 10.975


- Residual ISI will be affected by TF loss if channel tails > Np
- Need to distinguish residual ISI from TF loss or reflection
- Current values of Np & ISI_RES are unreasonable

-5

Ω

10

15

KR vs CR: from the Perspective of Reflection (1/2)

- Experiments for evaluating reflection impacts within TF
 - Choose 2 pairs of channels with similar IL but very different ERL
 - TF (TP0-TP2) information listed in appendix
 - COM spreadsheet shown in appendix
 - TX FIR set to Preset 1

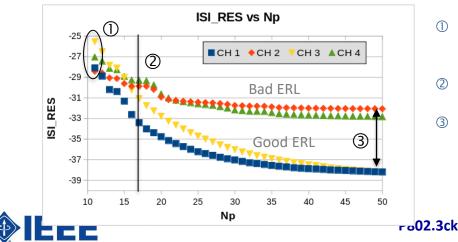
 * 12mm PKG & Cp = 87 fF

 TF (TP0-TP2) loss
 TP2 ERL

 CH 1
 9.07 dB
 10.61 dB

 CH 2
 9.29 dB
 7.05 dB

 CH 3
 11.15 dB
 10.92 dB


7.44 dB

 $> 7.3 \, dB$

11.15 dB

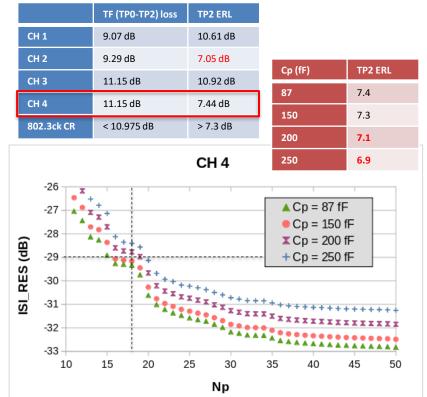
< 10.975 dB

• ISI_RES will be affected by not just TF loss but also impedance discontinuities within TF

① CH 1 & 3 with similar ERL but different TF loss contribute very different ISI_RES under Np = 11
 → Np = 11 is insufficient to cover TF loss-induced ISI

CH 4

802.3ck CR


- Necessity to differentiate TFs with different ERL conditions
 > Np = 17 at least
- ③ Though Np = 50 is long enough to cover channel tails, the impedance discontinuities within TPO-TP2 also make impacts on ISI_RES

 \rightarrow ISI_RES value at TP2 is more complicated to be specified

KR vs CR: from the Perspective of Reflection (2/2)

- Criterions of determining Np & ISI_RES
 - CH 4 with more critical TF conditions is chosen for analysis
 - If Np too small, severe fitted error within channel tails is inevitable
 - If Np too large, the existence of ISI_RES spec is less significant
 - Np > 17 is required to differentiate TFs with different ERL conditions (from the result of P.10)
 - Ability to filter out bad ERL cases
- Proposed changes for Np & ISI_RES
 - Np = $11 \rightarrow 18$
 - − ISI_RES = $-30 \rightarrow -29 \text{ dB}$
- Option B: Change Np from 11 → 18 & ISI_RES (max) from -30 dB → -29 dB

Conclusion & Proposal

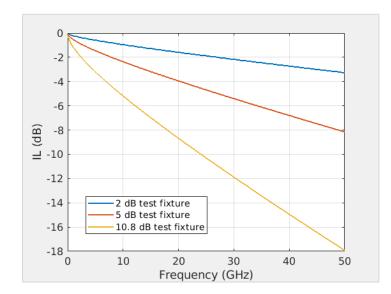
- ERL specification at TP2 is sufficient to constrain reflections which may cause severe degradation on COM
- This presentation shows that the residual ISI at TP2 will be affected by both TF loss & impedance discontinuities within TP0-TP2
 - Need to change the values of Np & ISI_RES (max) to
 - Distinguish residual ISI from TF loss and reflection
 - Differentiate TFs with different levels of impedance discontinuity
- Proposals
 - **Option A (preferred)**: Remove ISI_RES specification from 802.3ck CR (Table 162.10)
 - **Option B**: Change Np from $11 \rightarrow 18$ & ISI_RES (max) from -30 dB \rightarrow -29 dB

Option B	Np	RES_ISI (max)
CR	11	-30
Proposal	18	-29

Proposed Straw Poll

- I support the following direction for ISI_RES spec in 100Gbase CR
 - (A) Option A: Remove ISI_RES spec from 802.3ck CR (Table 162.10)
 - (B) Option B: Change Np from 11 to 18 & ISI_RES (max) from -30 dB to -29 dB
 - (C) The draft ISI_RES method and spec limit for CR need improvement

Appendix



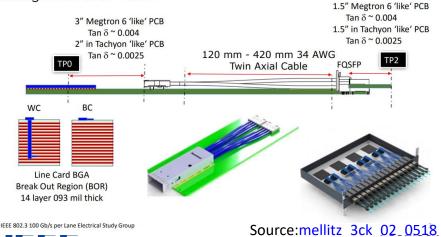
2/5/10.8 dB Test Fixture

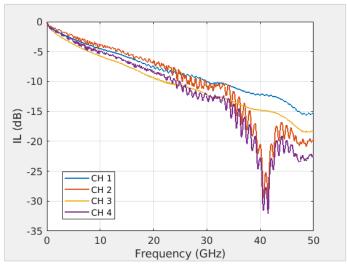
- TF generated based on reference PCB model
 - Impedance: 92.5 Ohm
 - 2/5/10.8 dB → 50/125/275 mm

Table 92–12 parameters						
Parameter Setting						
board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]					
board_tl_tau	5.790E-03	ns/mm				
board_Z_c	92.5	Ohm				

COM Spreadsheet for TP2 Impulse Response Generation

Parameter f_b f_min Delta_f	Setting 53.125	Units	Information			I/O control		Table 93A-3 parameters		
f_min Delta_f	53.125		information		DIAGNOSTICS	1	logical	Parameter	Setting	Units
Delta_f		GBd			DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
	0.05	GHz			CSV REPORT	0	logical	package tI tau	0.006141	ns/mm
	0.01	GHz			RESULT_DIR	.\results\100GEL_C	R_CA_{date}	package Z c	[87.5 87.5 ; 92.5 92.5]	Ohm
Cd	[1.2e-4 0]	nF	[TX RX]		SAVE FIGURES	0	logical			
Ls	[0.12, 0]	nH	[TX RX]		Port Order	[1324]	_		Table 92-12 parameter	s
C_b	[0.3e-4 0]	ηF	[TX RX]		RUNTAG	CR_eval_		Parameter	Setting	
z_p select	[12]		[test cases to run]		COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]		(Operational		board_tl_tau	5.790E-03	ns/mm
z_p (NEXT)	[0 0; 0 0]	mm	[test cases]		COM Pass threshold	3	dB	board_Z_c	100	Ohm
z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]		ERL Pass threshold	8.25	dB	z_bp (TX)	110.3	mm
z_p (RX)	[0 0; 0 0]	mm	[test cases]		DER_0	0.0001		z_bp (NEXT)	110.3	mm
C_p •	[0.87e-4 0]	ŊE	[TX RX]		T_r	0.0075	ņs	z_bp (FEXT)	110.3	mm
R_0	50	Ohm			FORCE_TR	1	logical	z_bp (RX)	110.3	mm
R_d	[50 50]	Ohm	[TX RX]		Local Search	2		C_0	[0.29e-4]	nE
A_v	0.413	V			BREAD_CRUMBS	1	logical	C_1	[0.19e-4]	DE
A_fe	0.413	V			SAVE_CONFIG2MAT	1	logical	Include PCB	0	logical
A_ne	0.608	V			PLOT_CM	0			Floating Tap Control	
AC_CM_RMS	0	V	[test cases]	0.0235 0.0256	TDR	and ERL options		N_bg	3	0 1 2 or 3 groups
L	4				TDR	1	logical	N_bf	3	taps per group
M	32				ERL	1	logical	N_f	40	UI span for floating taps
	filter and Eq				ERL_ONLY	0	logical	bmaxg	0.05	max DFE value for floating taps
fr •	0.75	*fþ			TR_TDR	0.01	<u>ns</u>	B_float_RSS_MAX	0.02	rss tail tap limit
c(0)	0.54		min		N	800		N_tail_start	25	(UI) start of tail taps limit
c(-1)	[-0.34:0.02:0]		[min:step:max]		beta_x	0			ICN parameters	
c(-2)	[0:0.02:0.12]		[min:step:max]		rho_x	0.618		f_v	0.594	*Eb
c(-3)	[-0.06:0.02:0]		[min:step:max]		fixture delay time	[.2e-90]	<pre>•port1 port2]</pre>	f_f	0.594	*Fb
c(1)	[-0.2:0.02:0]		[min:step:max]		TDR W TXPKG	1		f_n	0.594	*Fb
N_b	12	<u>y</u> ı			N_bx	0	<u>VI</u>	f_2	40.000	GHz
b_max(1)	0.85				Tukey_Window	1	logical	A_ft	0.600	v
b_max(2N_b) [0.3	3 0.2*ones(1,5) 0.1*ones(1,5)]				1	Noise, jitt er		A_nt	0.600	v
b min(1)	0.3				sigma RJ	0.01	UI.	~~~		
b_min(2N_b)	[0.05 -0.03*ones(1,10)]				A_DD	0.02	<u>Ų</u>		Receiver testing	
g_DC	[-20:1:0]	dB	[min:step:max]		eta_0	9.00E-09	V^2/GHz	RX_CALIBRATION	0	logical
f_z I	21.25	GHz			SNR_TX	32.5	dB	56GPAM4/matlab_m/112G	5.00E-03	V
f_p1	21.25	GHz			R_LM	0.95		CA		
f_p2	53.125	GHz								
g_DC_HP	[-6:1:0]		[min:step:max]							
f_HP_PZ	0.6640625	GHz								





TP0-TP2 Channel List

Contribution	Company		s4p	Manufacturing Variations	TP0-TP2 (dB)	TP2 ERL (dB)
Presentation: 100 GEL C2M Flyover Host Files: Tp0 to Tp2, with and without manufacturing variations, for losses of 9, 10, 11, 12, 13, and 14 dB Losses S-parameter files: C2M channels and xtalk (all lengths and variations)	Samtec	CH 1	C2M_Z100_IL9_BC-BOR_N_N_N_THRU	Normal	9.07	10.61
		CH 2	C2M_Z100_IL10_WC-BOR_H_L_H_THRU	Worst case	9.29	7.05
		CH 3	C2M_Z100_IL11p2_BC-BOR_N_N_N_THRU	Normal	11.15	10.92
		CH 4	C2M_Z100_IL12_WC-BOR_H_L_H_THRU	Worst case	11.15	7.44
802.3ck CR					< 10.975	> 7.3

System Topology Overview: C2M using FLYOVER Cable

