ERL for .3ck

Richard Mellitz Samtec

03/27/2019 IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical ad hoc meeting

Agenda

□ Review ERL

Proposal

ERL reduces all reflections to single bucket, ρ_{T} , at the measurement (test) point

RL or ERL addresses interoperability

Between

□ At part "T" under test

and

□ Any complementary part "x" connecting to "T"

□ The control is specifying the limits on the reflection bucket ρ • Such that $\rho = 10^{-ERL/20}$

ERL/COM Caveats

The ERL test limit is relative to the variations of COM computation for different parts excepted to pass

□ A loss dominated system is sort of like a "self-fulling prophecy"

- Reflection can't be very great for system to work
- So we would see little ERL correlation to COM
- In a reflection dominated system ERL should be better correlated to COM
- Reflections in the middle of channel don't tend to re-reflect at the ports
- Reflections at the end tend to re-reflect with the complementary part "x"

The Complication: DFE (or equivalent)

- □ The DFE is like a leaky bucket
- □ Ideally the DFE should remove this reflection at the receiver
- The problem gets complicated by the fact that even if "DFE" reflections are removed
 - They will be re-reflected and become part of the reflection bucket
- □ We overcame this by applying a time domain gating filter for span of the DFE
- □ This filter was somewhat complicated
 - It was intend to be model scattering near the interface

The Grr "DFE" reflection filter

Changes to Annex 93A ... a simplification

Change 93A-61 to

$$TG_{rr}(t) = \begin{cases} 0, & t < T_{fx} \\ \rho_{x}G_{x}, & T_{fx} \le t < T_{fx} + \frac{N_{bx}+1}{f_{b}} \\ 1, & t \ge T_{fx} + \frac{N_{bx}+1}{f_{b}} \end{cases} \leftarrow G_{rr}(t) = \begin{cases} 0 & t < T_{fx} \\ \rho_{x}(1+\rho_{x})\exp\left(-\frac{\left[(t-T_{fx})f_{b}-(N_{bx}+1)\right]^{2}}{(N_{bx}+1)^{2}}\right) & T_{fx} \le t < T_{fx} + \frac{N_{bx}+1}{f_{b}} \\ 1 & t \ge T_{fx} + \frac{N_{bx}+1}{f_{b}} \end{cases}$$
(93A-61)

Annov Q2A

Where

G_x= is defined in the calling clause Normally set G_x =1 in .3ck

If not set in the calling clause G_x is defined as such $(t-T_x)^2$

$$G_{x} = (1 + \rho_{x})e^{-\frac{\left(\frac{l-1fx}{T_{b}} - (N_{b}+1)\right)}{(N_{b}+1)^{2}}}$$

i.e the case for .3cd IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Determine the Loss Weighting for a Signaling Architecture in Relation to Expected Packages

- □ Assuming a package context for signaling of a short and long package
- $\hfill\square$ Tp δ is the timing difference between pulse responses
 - Tp δ = 1.2180e-10 for .3ck
- $\hfill \Delta IL$ is the loss difference a the Nyquist frequency
 - Δ IL =1.85 dB for .3ck
- \Box Define IL_{ref} as a required insertion loss
 - IL_{ref} = 28 dB for .3ck

 \Box Define the loss weight, β_x , as:

•
$$\beta_x = \frac{10^{\frac{-(IL_{ref} - \Delta IL)}{20} - 10^{\frac{-(IL_{ref})}{20}}}}{\frac{-(IL_{ref})}{20}}{\frac{-(IL_{ref})}{20}}$$

• $\beta_x = 1.95 \text{ GHz}$

β_{x} only for packages

Package loss should only be use for package testing

- □ It is to compensate for short packages
- \Box For channel, cable assemblies, and hosts $\beta_x = 0$

Ties Between Package and Channel ERL: ρ_{x}

□ Define either ERL for a channel or package

 $\hfill The parameter, \rho_x$, uses the ERL of the other side at the test point in the computation of ERL

• $\rho_x = 10^{\frac{-ERL}{20}}$

• This caps the re-reflection at the test point

Proposal Looks Like Averaging in the Gated Region

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Parameters for KR

KR Tx and Rx device $\Box \rho_{x} = 0.32$ $\Box G_x = 1$ $\Box \beta_x = 1.95 \text{ GHz}$ **Tr** = 10 ps \Box N = 200 □ Nbx=Nb (unless rxFFE) □ ERL limit - TBD

KR channel $\Box \rho_{x} = 0.15$ $\Box G_x = 1$ $\Box \beta_x = 0$ **Tr** = 10 ps \Box N = 2000 □ Nbx=Nb (unless rxFFE) □ ERL limit - TBD

Parameters for CR

CR host $\Box \rho_{x} = 0.3$ $\Box G_x = 1$ $\Box \beta_x = 0$ **Tr** = 10 ps \Box N = 600 □ Nbx=Nb (unless rxFFE) □ ERL limit - TBD

Cable assembly $\Box \rho_{x} = 0.25$ $\Box G_x = 1$ $\Box \beta_x = 0$ **Tr** = 10 ps \Box N = 2000 □ Nbx=Nb (unless rxFFE) □ ERL limit - TBD

Parameters for AUI

AUI Host $\Box \rho_{x} = 0.15$ $\Box G_x = 1$ $\Box \beta_x = 0$ **Tr** = 10 ps \Box N = 800 \Box Nbx = 4 □ ERL limit - TBD

AUI module $\Box \rho_{x} = 0.3$ $\Box G_x = 1$ $\Box \beta_x = 0$ **Tr** = 10 ps \Box N = 200 \Box Nbx= 4 □ ERL limit - TBD

Moving forward

Discussion