Proposed CR ISI_RES Spec Change

Mau-Lin Wu, Tobey P.-R. Li MediaTek

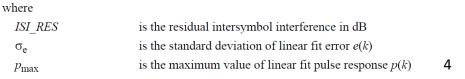
For IEEE 802.3ck Ad-Hoc

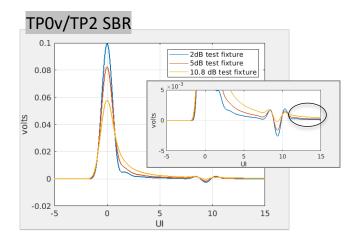
P802.3ck

Contributors

- Adee Ran, Cisco
- Piers Dawe, Nvidia
- Upen Reddy Kareti, Cisco
- Mike Dudek, Marvell

Outlines


- Background
- Options
- Experiments
- Proposal



Background

- In <u>li_3ck_adhoc_01_030922</u>, the issue of CR ISI_RES spec in D3.1 was raised & possible solutions were discussed
 - No consensus on solutions during the meeting, email off-line discussions followed
- Several options were proposed & discussed
 - Option 1: change CR ISI_RES = -29 dB with Np = 18
 - Option 2: Including CTLE for CR ISI_RES calculation
 - Option 3: by different TX FIR setting to minimize ISI_RES
 - Option 3A: minimizing ISI_RES by one specific TX EQ & CR ISI_RES = -29 dB
 - Option 3B: p(k) with TX EQ off, minimizing e(k) by one specific TX EQ
- Compare these options

$$ISI_RES = 20\log_{10}\left(\frac{\sigma_e}{p_{\max}}\right)$$

Current spec in D3.1

	TX SNDR spec (Np = 200)	RES_ISI spec (Np = 11)
KR	32.5	-31
CR	31.5	-30

Option 2: Including CTLE for CR ISI_RES calculation

 The concept that 802.3 has already adopted in 120D.3.1.7, Transmitter output residual ISI

120D.3.1.7 Transmitter output residual ISI

 SNR_{ISI} is defined by Equation (120D–9) computed from p_{max} and $ISI_{cursors}$ after these have been recalculated with the continuous time filter described in 93A.1.4.3 using the parameters in Table 120D–8 applied and optimized for maximum SNR_{ISI} . The SNR_{ISI} specification shall be met for all transmit equalization settings.

$$ISI_{cursors} = [p(t_p + M \times (N_b + 1)), p(t_p + M \times (N_b + 2)), ..., p(t_p + M \times (N_p - D_p - 1))]$$
(120D-8)

$$SNR_{\rm ISI} = 20\log_{10}\left(\frac{p_{\rm max}}{\sqrt{\sum (ISI_{\rm cursors}^2)}}\right)$$
(120D-9)

 $ISI_{cursors}$ are computed from the linear fit pulse response, p(k) in accordance with 120D.3.1.3, using Equation (120D-8), where

- t_p is the index of the linear fit pulse where $p(t_p)$ equals p_{max}
- M is the oversampling ratio of the measured waveform and linear fit pulse as defined in 85.8.3.3.4
- N_p is the linear fit pulse length given in 120D.3.1.3
- N_b is given in Table 120D-8

Option 3: by different TX FIR setting to minimize ISI_RES

- TX EQ can flatten the "long tail" due to dispersion in the TPO-TP2 channel
- Option 3: by different TX FIR setting to minimize ISI_RES
 - Option 3A: minimizing ISI_RES by one specific TX EQ & CR ISI_RES = -29 dB
 - Option 3B: p(k) with TX EQ off, minimizing e(k) by one specific TX EQ
- Option 3A vs. Option 3B
 - Option 3A makes more sense, while option 3B is too optimistic
- Proposed Option $3A \rightarrow$ evaluate the ISI_RES limit next

Comparison of KR (TPO-TPOv) vs. CR (TPO-TP2) ERL

163.9.2.1.2 Test fixture effective return loss (ERL)

ERL of the test fixture at TP0v is computed using the procedure in 93A.5 with the values in Table 163–6. Parameters that do not appear in Table 163–6 take values from Table 163–11.

Table 163-6-Test fixture ERL parameter values

Parameter		Value	Units
Transition time associated with a pulse		0.01	ns
Incremental available signal loss factor		0	GHz
Permitted reflection from a transmission line external to the device under test		0.618	_
Length of the reflection signal		200	UI
Equalizer length associated with reflection signal		0	UI
Time-gated propagation delay		0	ns
Tukey window flag		1	—

The ERL at TP0v shall be greater than or equal to 15 dB.

- TPO-TP2 ERL (based on Table 162-13 except T_fx = 0)
 - T_fx = 0: same as TPO-TPOv test fixture ERL calculation (163.9.2.1.2)

162.9.4.5 Transmitter effective return loss (ERL)

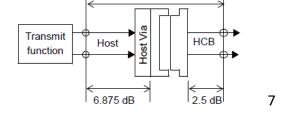

ERL of the transmitter at TP2 is defined by the procedure in 93A.5 with the values in Table 162–13. The value of T_{fx} is twice the delay between the test fixture test connector and the test fixture host-facing connection minus 0.2 ns. Parameters that do not appear in Table 162–13 take values from Table 162–19.

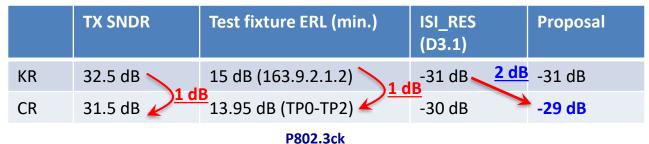
Table 162–13—Transmitter and receiver ERL parameter values

Parameter	Symbol	Value	Units
Transition time associated with a pulse		0.01	ns
Incremental available signal loss factor		0	GHz
Permitted reflection from a transmission line external to the device under test		0.618	—
Length of the reflection signal		800	UI
Equalizer length associated with reflection signal		0	UI
Tukey window flag		1	—

10.975 dB

TP2

TP0


P802.3ck

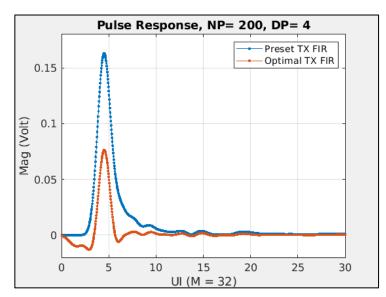
The Proposed CR ISI_RES Spec

- One TPO-TP2 channel that marginally passes TX ERL spec at TP2 was checked
 - TPO-TP2 ERL = 13.95 dB, ~1dB smaller than KR (15 dB)

Source	Company	S4p	TX ERL (min 7.3 dB)	TPO-TP2 ERL
C2M channels and xtalk (all lengths and variations)	Samtec	C2MZ100_IL12_WC- BOR_H_L_H_THRU	7.44 dB	13.95 dB

- The ISI_RES spec limits between KR & CR should be adjusted based on
 - − 1dB difference in TX SNDR \rightarrow 1 dB smaller ISI_RES (-31 \rightarrow -30 dB)
 - − Different impedance discontinuity nature between TPO-TPOv & TPO-TP2 \rightarrow 1 dB smaller ISI_RES (-30 \rightarrow -29 dB)

Example of Spec Methodology and Spec Limit


- TX FIR spec (Table 162–10)
 - Max. TX FIR peaking gain: ~11 dB

Transmitter output waveform			
absolute value of step size for all taps (min)	162.9.3.1.4	0.005	_
absolute value of step size for all taps (max)	162.9.3.1.4	0.025	_
value at minimum state for $c(-3)$ (max)	162.9.3.1.5	-0.06	_
value at maximum state for $c(-2)$ (min)	162.9.3.1.5	0.12	_
value at minimum state for $c(-1)$ (max)	162.9.3.1.5	-0.34	—
value at minimum state for $c(0)$ (max)	162.9.3.1.5	0.5	_
value at minimum state for $c(1)$ (max)	162.9.3.1.5	-0.2	—

• TX compliance results

	TX FIR Setting	ISI_RES (Np = 11)
Preset 1	[00010]	-27.10 dB
Optional 3A	[-0.06 0 -0.14 0.6 -0.2]	-29.15 dB

 TX FIR can flatten the "long tail" due to dispersion, although it may cause undershoot just before and after main cursor * Take "C2M__Z100_IL12_WC-BOR_H_L_H_THRU" as example

Proposed Modifications to D3.1

- Add the following paragraph after the 1st sentence of 163.9.2.6 [Thanks to Adee's contribution]
 - ISI_RES is calculated from measurements with a single transmit equalizer setting to compensate for the loss of the transmitter package and host channel. The equalizer setting is chosen to minimize ISI_RES.
- In Table 162-10, change
 - ISI_RES (max) from -30 dB to -29 dB

