

Discussion of System Noise and Receiver Noise in COM

Mau-Lin Wu, Pei-Rong Li, Yuan-Hao Tung-MediaTek Richard Mellitz – Samtec IEEE 802.3ck Task Force

Outline

- Motivations
- System noise COM benchmark legacy vs. new models
- Receiver noise model
- Performance impact of receiver noise in COM_{min} bucket
- Conclusions & summary
- Proposals

Motivation

- Currently, 'Eta_0' is applied in COM 2.60 for modeling system noise and/or receiver noise
- The following questions were raised
 - Which model is appropriate for system & receiver noise?
 - What's the impact to COM_{min} budget?
- In [1], the authors highlighted COM is sensitive to wideband 'Eta_0'
 - 1.0 dB COM loss comparing Eta_0 = 16e-9 to 8e-9
- In [2], Richard proposed new "Bandlimited" model for system noise
- In [3], Adam reviewed all implementation allowance "bucket"
- We tried to address the following topics here
 - What's the impact of "Bandlimited" system noise?
 - How to model system & receiver noise in COM?
- Observations & proposal
 - Bandlimited system noise is not significant to COM
 - Need to include RX noise to improve Channel Test accuracy
 - Propose several options for system noise & RX noise modeling for discussion

Richard's Bandlimited System Noise

 In [2], Richard proposed to adopt new model for system noise

Filter estimate by comparing to PSD of the noise

$$H_e(f) = sinc \left(\frac{f - f_{spike}}{f_{spike}} \sqrt{2}\right)^2$$

$$\eta_0 = \frac{\sigma^2}{\sum_{0}^{f_b} sinc \left(\frac{f - f_{spike}}{f_{spike}} \sqrt{2}\right)^2 \Delta f}$$

 $\eta_0 = 2.1238e-06 V^2/GHz$ assuming σ of 1 mV RMS and $f_{spike} = 1 GHz$

- We tried to evaluate performance impact by this new Bandlimited system noise model
 - Case 1: 1mV system noise: use $\eta_0 = 2.1238e-06 V^2/GHz$
 - Case 2: 0.5mV system noise: use $\eta_0 = 5.3096e-07 V^2/GHz$

REDIATER

Adopted COM Parameters (COM 260)

- Analysis of 42 channels as [1]
- By COM 260
 - By enabling Richard's new system noise model by 'Bandlimited' style [2]
 - C_d = 120 fF
 - b_max[1] = 0.85, b_max[2..N_b] = 0.3

Table 93A-1 parameters				I/O control			Table 93A-3 parameters		
Parameter	Setting	Units	Information	DIAGNOSTICS	1	logical	Parameter	Setting	Units
f_b	53.125	GBd		DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]	
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.141E-03	ns/mm
Delta_f	0.01	GHz		RESULT_DIR	.\results\100GEL_WG_{date}\		package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm
C_d	[1.2e-4 1.2e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical			
z_p select	[12]		[test cases to run]	Port Order	[1 3 2 4]		Table 92–12 parameters		
z_p (TX)	[12 32; 1.8 1.8]	mm	[test cases]	RUNTAG	CR_eval_		Parameter	Setting	
z_p (NEXT)	[12 32; 1.8 1.8]	mm	[test cases]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2	[0 3.8206e-04 9.5909e-05]	
z_p (FEXT)	[12 32; 1.8 1.8]	mm	[test cases]	Operational			board_tl_tau	5.790E-03	ns/mm
z_p (RX)	[12 32; 1.8 1.8]	mm	[test cases]	COM Pass threshold	3	dB	board_Z_c	90	Ohm
C_p	[0.87e-4 0.87e-4]	nF	[TX RX]	ERL Pass threshold	10.5	dB	z_bp (TX)	119	mm
R_0	50	Ohm		DER_0	1.00E-04		z_bp (NEXT)	119	mm
R_d	[50 50]	Ohm	[TX RX]	T_r	6.16E-03	ns	z_bp (FEXT)	119	mm
A_v	0.413	V	vp/vf=.694	FORCE_TR	1	logical	z_bp (RX)	119	mm
A fe	0.413	V	vp/vf=.694	Include PCB	0	logical			
A_ne	0.608	V		TDR and ERL options					
L	4			TDR	1	logical			
М	32			ERL	1	logical			
filter and Eq				ERL_ONLY	0	logical			
f_r	0.75	*fb		TR_TDR	0.01	ns			
c(0)	0.54		min	N	1000				
c(-1)	[-0.34:0.02:0]		[min:step:max]	TDR_Butterworth	1	logical			
c(-2)	[0:0.02:0.12]		[min:step:max]	beta_x	1.70E+09				
c(-3)	[-0.06:0.02:0]		[min:step:max]	rho_x	0.25				L
c(1)	[-0.2:0.05:0]		[min:step:max]	fixture delay time	0	enter sec			,
N_b	24	UI		Receiver testing					
b_max(1)	0.85			RX_CALIBRATION	0	logical			
b_max(2N_b)	0.3			 Sigma BBN step	5.00E-03	V			
g_DC	[-20:1:0]	dB	[min:step:max]	Noise, jitter					
f_z	21.25	GHz		sigma_RJ	0.01	UI			
f_p1	21.25	GHz		A_DD	0.02	UI			
f_p2	53.125	GHz		eta_0	0	V^2/GHz			
g_DC_HP	[-6:1:0]		[min:step:max]	SNR_TX	33	dB			
f_HP_PZ	0.6640625	GHz		R_LM	0.95				
ffe_pre_tap_len	0	UI		USE_ETA0_PSD	1				
ffe_post_tap_len	0	UI							
ffe_tap_step_size	0								
ffe_main_cursor_min	0.7								
ffe_pre_tap1_max	0.3								
ffe_post_tap1_max	0.3								
ffe_tapn_max	0.125								
ffe_backoff	0								
							i		

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

42 channel properties

Four Scenarios – Settings

- We tried to compare COM of legacy and new system noise models
 - Legacy: wideband used in 802.3cd
 - New: Bandlimited proposed by Richard [2]
- We compared for 0.5 mV_{rms} & 1 mV_{rms} system noise
 - By legacy model
 - 1mV: η₀ = 2.5098e-08 V²/GHz [Scenario 1]
 - 0.5mV: η₀ = 6.2745e-09 V²/GHz [Scenario 2]
 - By new model
 - 1mV: η₀ = 2.1238e-06 V²/GHz [Scenario 3]
 - 0.5mV: η₀ = 5.3096e-07 V²/GHz [Scenario 4]

Noise level \ Model	Legacy (white)	New (Narrow-band)
1mV _{rms}	Scenario 1	Scenario 3
0.5mV _{rms}	Scenario 2	Scenario 4

COM Comparison

Detailed Analysis

- COM of new model (H_{sy} сом) is much better than legacy one (white COM)
- For H_{sy} COM –white COM 1mV [Scenario 3 – Scenario 1]
 - Mean = 2.73 dB
 - Min = 0.01 dB
 - Max = 5.96 dB
 - Std= 1.50 dB
- Same trend as 0.5 mV [Scenario 4 – Scenario 2]
 - Mean = 1.06 dB
 - Min = -0.02 dB
 - Max = 2.98 dB
 - Std= 0.73 dB

System Noise COM Benchmark

Scenario	Noise (mV _{rms})	Model		COM Lo	SS (dB, comp	aring to NO sy	stem noise)
		Legacy (white)	New (N.B.)	Mean	Min	Max	Std
1	1	V		3.31	0.51	6.68	1.50
2	0.5	V		1.26	0.13	3.19	0.73
3	1		V	0.58	0.22	0.93	0.15
4	0.5		V	0.21	0.06	0.36	0.07

- By new (Bandlimited) system noise model
 - Mean of COM loss is much smaller comparing to wideband model
 - The variation among channels is also small
- "Bandlimited" noise from external is NOT so critical to COM performance
- Input-referred white noise is critical
 - Details in following analysis

Selected 9 → 7 KR Channels

 9 KR channels were selected as baseline in <u>'kochuparambil 3ck 01c 0119.pdf</u>'

Contribution	Channel	CH ID
haak 2ak 01 1119	28dB Cabled Backplane/Cable_BKP_28dB_0p575m_more_isi	1
neck_Sck_OI_III8	<u>16dB Cabled Backplane</u> /Cable_BKP_16dB_0p575m_more_isi	2
<u>mellitz 3ck adhoc 02 081518</u>	24,28,30dB including BGA Via/CaBP_BGAVia_Opt2_28dB	3
	Traditional Backplane Channels/Std_BP_12inch_Meg7	4
tracy_3ck_01_0119	Orthogonal Backplane Channels/DPO_IL_12dB	5
	Measured Orthogonal Backplane Channels/OAch4	6
	Measured Orthogonal Backplane Channels/Och4	7
<u>kareti_3ck_01a_1118</u>	Measured Cabled Backplane Channels/CAch3_b2	8
_	Weasured Traditional Backplane Channels/Bch2_a/p5_/	9

COM Parameters of 9 KR channels

Selected 7 KR Channels – System Noise

- If we don't model RX noise in COM &
 - By Bandlimited system noise model,
 - All 7 KR channels pass 3dB COM no matter with 0.5mV or 1mV system noise
 - Q: Is it too optimistic to "including RX noise" into 3dB COM bucket?
- Let's explore this in the following

СН	IL (wo	ICN (mV)	FOM_I	СОМ (dв)					
ID	PKG, dB)		LD (dB)	NO noise	N.B.		White		
					0.5mV	1.0mV	0.5mV	1.0mV	
1	29.42	1.571	1.074	4.72	4.63	4.31	2.78	-0.21	
2	16.39	2.151	0.864	5.71	5.53	5.21	5.38	4.52	
3	26.72	0.659	0.514	7.29	7.09	6.71	4.90	2.07	
4	16.49	8.317	0.876	3.91	3.65	3.05	3.68	3.04	
5	13.10	1.750	1.036	6.32	6.16	5.72	6.14	5.62	
6	28.72	0.700	0.899	4.22	4.03	3.68	2.38	-0.36	
8	27.81	0.475	0.274	6.23	5.97	5.60	4.07	1.04	

Receiver Noise in COM_{min} **Bucket**

- As raised in [3], we need to evaluate the impact of 'Receiver Noise' to COM_{min} bucket
- 'Receiver Noise' includes
 - Analog front-end noise
 - ADC quantization noise or Slicer noise & offset
- 'Receiver noise' could be modeled as 'input-referred' noise at RX input by wideband style η₀
- We try to analyze COM_{min} impact by different η₀ values among
 - 0 V²/GHz
 - 0.82e-8 V²/GHz
 - 1.23e-8 V²/GHz
 - 1.64e-8 V²/GHz

RX Noise Model – Noise Floor

- Boltzmann noise floor per Hz for a resistor is $N_p = 10 log 10(k_b * T_k) + 30$
 - where $k_b = 1.38064852e-23 \text{ W}/T_k$
 - T_k = degrees Kelvin
 - The 30 is the 'W' to 'mW' conversion
 - -173.97 dBm/Hz at 16.85° C (~= -174 dBm/Hz)
 - -172.88 dBm/Hz at 100° C (~= -173 dBm/Hz)
- The quantum nature of electron-hole pairing on a semiconductor substrate adds between 10 to 20 dB (implementation noise figure, NF) above the Boltzmann noise floor
 - So it look like are working with -163 to -153 dBm/Hz

RX Noise Model – NF vs. Eta_0

- Let R = 100 ohms, T = 100° C
- Noise (N_{RX}, dBm/Hz) = Thermal noise floor (-173) + receiver noise figure (NF)
 - $N_{RX} = 10 \log 10 \left(\frac{\eta_0}{R} / 1e9 * 1e3 \right)$
- What's the appropriate level?
 - ~15 dB NF? This is what we adopted in 802.3cd
 - Shall be independent of symbol rate!!
 - 0.5mV? It's critical to achieve this due to higher $f_b!$

η ₀ (ν²/gнz)	N_{RX} (dBm/Hz)	NF (dB)	V _{rms} (mV @ 0.75f _b)
5.0119e-10	-173.00	0.00	0.14
0.627e-8	-162.03	10.97	0.50
0.82e-8	-160.86	12.14	0.57
1.23e-8	-159.10	13.90	0.70
1.64e-8	-157.85	15.15	0.81
2.51e-8	-156.00	17.00	1.00

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

System & Receiver Noise Models

- We model system & receiver noises in COM as below
- System noise
 - by Richard's 'Bandlimited' model [with 0.5 mV_{rms}]
- Receiver noise
 - by input-referred noise spectral density, η_0

Receiver Noise in COM_{min} **Bucket**

Conf.	Sys.	RX Noise	COM loss in dB (to Conf. 1, which is w.o. RX noise)					
Noise			Mean	Min	Max	Std		
0	Off	Off	-0.21	-0.36	-0.06	0.07		
1	On	Off	0	0	0	0		
2	On	$\eta_0 = 0.82e-8 V^2/GHz$	1.52	0.18	3.61	0.83		
3	On	$\eta_0 = 1.23e-8 V^2/GHz$	2.03	0.25	4.55	1.05		
4	On	η ₀ = 1.64e-8 V ² /GHz	2.46	0.32	5.29	1.21		

- COM losses are quite different among different channels
 - Some are sensitive, while others are not
 - Detailed analysis followed
- Take $\eta_0 = 1.64e 8$ as reasonable level
 - ~2.5 dB COM loss contribute a lot to COM budget, if we don't include RX noise in COM
 - Can we take 2.5 dB from 3 dB COM_{min} bucket just for two noise terms?
 → definitely not!

Model of RX Noise – Options Comparison

Conf. Sys. Noise	Sys.	RX Noise	COM loss in dB (to Conf. 1)					
		Mean	Min	Max	Std			
1	On	Off	0	0	0	0		
3	On	$η_0 = 1.64e-8 V^2/GHz$	2.46	0.32	5.29	1.21		

- Let's allocate 0.5 dB COM loss for RX noise, under COM_{min} = 3 dB
- Option 1 exc. RX noise with extended COM_{min}
 - Since Mean of COM loss is 2.46 dB, we may set COM_{min} = 3 + (2.46 0.5) ~= 5.0 dB & excluding RX noise in COM
- Option 2 inc. RX noise with reduced COM_{min}
 - Reduce COM_{min} to 3 0.5 = 2.5 dB

Option \ ModelsWith RX noiseCOM_min1No5.02Yes2.5

- Take Option 2 as golden, to calculate the <u>Channel Test Error Rate</u> = <u>Missing Rate</u> + <u>False Alarm Rate</u>
 - Missing : Channel passed COM by option 2, but failed COM by option 1
 - False Alarm : Channel failed COM by option 2, but passed COM by option 1

COM Loss vs. COM Analysis

- For some channels, RX noise is not dominant term
 - COM loss is small → Option 1 is too pessimistic, may over-kill some qualified channels → Missing
- For some channels, RX noise dominates
 - COM loss is large → Option 1 is too optimistic, some disqualified channels may pass COM_{min} → False alarm

RX noise power is not dominant term (<6%) \rightarrow COM is not sensitive to RX noise

RX noise power is not dominant term(>38%) \rightarrow COM is sensitive to RX noise

Channel List: details

Channel Test Error Rate – 14%

- Calculate Channel Test Error Rate
 - Missing + False Alarm Rates
- Config. 4 case is shown in the figure
 - 6/42 = 14% test error rate!!
- We may consider to include Receiver Noise in COM for channel test – Option 2
- Channel Test Error Rate for all configurations in the table below

onfia 28.3 - details

	<u>conjig. z c</u>		<u>5</u>					
Config.	η ₀ (V²/GHz)	COM _{min}		COM _{min} Channel Pass Rate		Missing/	Error Rate	
		Option 1	Option 2	Option 1	Option 2	False Alarm		
2	0.82e-8	4.0	2.5	71%	71%	x4 / x4	19%	
3	1.23e-8	4.5	2.5	60%	60%	x3 / x3	14%	
4	1.64e-8	5.0	2.5	52%	57%	x4 / x2	14%	

Selected 7 KR Channels – COM Values

- Too optimistic to model Bandlimited system noise only
- By modeling Receiver noise & take COM_{min} = 2.5 dB
 - Channel 2, 3, 4, & 5 can pass for all RX noise cases
 - Channel 1 & 6 fails for all RX noise cases
 - Channel 8 is sensitive to RX noise
- May need some improvements on Channels 1 & 6

СН	IL (wo	ICN (mV)	FOM_I	СОМ (dв)					
ID	PKG, dB)		LD (dB)	Conf. 0	Conf. 1	Conf. 2	Conf. 3	Conf. 4	
		System no	<u>ise</u>	<u>0mV</u>	<u>0.5mV</u>	<u>0.5mV</u>	<u>0.5mV</u>	<u>0.5mV</u>	
		<u>RX noise</u>		<u>0mV</u>	<u>0mV</u>	<u>0.57mV</u>	<u>0.70mV</u>	<u>0.81mV</u>	
1	29.42	1.571	1.074	4.72	4.63	2.23	<u>1.43</u>	<u>0.76</u>	
2	16.39	2.151	0.864	5.71	5.53	5.10	4.91	4.73	
3	26.72	0.659	0.514	7.29	7.09	4.35	3.62	3.01	
4	16.49	8.317	0.876	3.91	3.65	3.15	3.04	2.94	
5	13.10	1.750	1.036	6.32	6.16	5.93	5.81	5.71	
6	28.72	0.700	0.899	4.22	4.03	<u>1.82</u>	<u>1.08</u>	<u>0.52</u>	
8	27.81	0.475	0.274	6.23	5.97	3.39	2.63	2.00	

Conclusions

- Analysis of Richard's proposed system noise
 - CTLE will reduce system noise a lot
 - Outperforms the legacy model
 - Not significant to COM
- Receiver noise impacts to COM_{min} bucket
 - Average of 2.46dB by $\eta_0 = 1.64e-8 V^2/GHz$
 - Variation is large

Proposal Options

Based on the above analysis, we proposed the following proposal options for discussion

Option	η ₀ (V ² /GHz) — wideband "input referred" noise	Rx Noise Factor, (NF in dB) (Informational)	η ₀ (V ² /GHz) — bandlimited "system" noise ^{*1}	COM _{min} (dB)	Comments for consensus discussion
Option 1	0.82e-8	12.14	NA	3.0	Present working spreadsheets
Option 2	1.64e-8	15.15	5.3096e- 07	2.5	Balanced missing/false alarm
Option 3	1.23e-8	13.90	NA	3.0	Model only RX noise with more appropriate levle
Option 4	5.0119e-10	0	5.3096e- 07	3.0 or TBD	Only consider resistor thermal noise and system noise. NF included in COM _{min} budget
Option 5					Something else

*1 The bandlimited "system" noise is modeled as proposed by Richard [2]

References

- [1] Mau-Lin Wu, et al., "COM Parameters Proposal for KR", IEEE 802.3ck 2019 March Plenary Meeting [wu 3ck 01b 0319.pdf]
- [2] Richard Mellitz, "Exploring System Noise, η₀, for Usage in COM", IEEE 802.3ck 2019 March Plenary Meeting [mellitz 3ck 01 0319.pdf]
- [3] Adam Healey, "Considerations for the minimum COM limit", IEEE 802.3ck 2019 March Plenary Meeting [healey 3ck 01 0319.pdf]
- [4] Beth Kochuparambil, "Summary of System Discussion of Backplane Channels", IEEE 802.3ck 2019 January interim Meeting [kochuparambil 3ck 01c 0119.pdf]

everyday genius

New Model Outperforms Legacy?

- By modeling system noise as 'lowfrequency' (1GHz) Bandlimited noise
 - System noise level is reduced by CTLE up to ~20 dB → 1 mV_{rms} becomes 0.1 mV_{rms}
- By modeling system noise is 'white'
 - System noise level is reduced not so much (up to 5.2 dB) \rightarrow 1 mV_{rms} becomes 0.55 mV_{rms}
- That's the major reason for COM difference
- Q: What's the appropriate level of system noise?

Channel List of A~G

RX noise power is not dominant term (<6%) \rightarrow COM is not sensitive to RX noise

RX noise power is not dominant term(>38%) \rightarrow COM is sensitive to RX noise

Channel	File Name	Author, Year/Month
А	Bch1_3p5	Kareti, 2018/Nov
В	BPZ100sm_IL15to16_BC-BOR_N_N_N	Mellitz, 2018/Jan
С	Std_BP_12inch_Meg7_THRU_B56	Tracy, 2019/Jan
D	CABLE_BP_and_cards_300mm30AWG_2000mm28AWG_300mm30AWG	Mellitz, 2017/May
E	Cable_BKP_28dB_0p575m_more_isi	Heck, 2018/Nov
F	Cable_BKP_28dB_0p995m_more_isi	Heck, 2018/Nov
G	OAch4	Kareti, 2018/Nov

MEDIATER

Channel Test Error Rate – Conf. 2 & 3

Config. 2

Config. 3

Config.	η ₀ (V²/GHz)	COM _{min}		Channel Pass Rate		Missing/	Error Rate
		Option 1	Option 2	Option 1	Option 2	False Alarm	
2	0.82e-8	4.0	2.5	71%	71%	x4 / x4	19%
3	1.23e-8	4.5	2.5	60%	60%	x3 / x3	14%
4	1.64e-8	5.0	2.5	52%	57%	x4 / x2	14%

MEDIATEK .

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Selected KR Channels Policy

- All 9 KR baseline channels & all 15 KR channels before 2018 Nov.
- Select 18 channels from IEEE 2018 Nov. channels
 - Try to cover wide ranges from different perspectives
 - IL (ball-2-ball): 13 30 dB
 - COM: -0.8 6.0 dB
- Some low IL with high ICN/ILD channels: IL ~= 16 dB, ICN = 3.6mV & 8.3mV
- Some high IL with low ICN/ILD channels : IL = 27.8 dB, ICN = 0.5mV, ILD = 0.3 dB

Selected 42 Channels Analysis

Show basic COM parameters for 9 KR channels

