CR Baseline Proposal Considerations at Compliance Points

Chris DiMinico MC Communications/PHY-SI LLC/Panduit cdiminico@ieee.org

Review – CR baselines

- 162.9 PMD electrical characteristics
 - Tx requirements compliance at TP2
 - Rx requirements compliance at TP3
- 162.11 Cable assembly characteristics
 - requirements compliance at TP0-TP4
- 162.10 Channel characteristics Channel information TP0-TP5 Annex 162A
- Annex 162A (informative) TP0 and TP5 test point parameters and channel characteristics
- Annex 162B (normative) Test fixtures (adopted)
- Annex 162C (normative) MDIs (adopted)
- Annex 162D (informative) Host and cable assembly form factors

Test points	Description
TP0 to TP5	The channel including the transmitter and receiver differential controlled impedance printed circuit board insertion loss and the cable assembly insertion loss.
TP1 to TP4	All cable assembly measurements are made between TP1 and TP4 as illustrated in Figure 136-2. The cable assembly test fixture of Annex 136B, or its equivalent, is required for measuring the cable assembly specifications in 136.10 at TP1 and TP4.
TP0 to TP2 TP3 to TP5	A mated connector pair has been included in both the transmitter and receiver specifications defined in 136.9.3 and 136.9.4. The recommended maximum insertion loss from TP0 to TP2 or from TP3 to TP5 including the test fixture is provided in 136.9.3.2.
TP2	Unless specified otherwise, all transmitter measurements defined in 136.9.3 are made at TP2 utilizing the test fixture specified in Annex 136B.
TP3	Unless specified otherwise, all receiver measurements and tests defined in 136.9.4 are made at TP3 utilizing the test fixture specified in Annex 136B.

Table 136–7—Test points

Review – Channel loss budget

Backplane objective:

 Define single-lane, two-lane, and four-lane 100 Gb/s PHY(s) for operation over electrical backplanes supporting an <u>insertion loss ≤28 dB at 26.56 GHz</u>.

Twin-axial objective(s):

- Define single-lane, two-lane, and four-lane 100 Gb/s PHY(s) for operation over twin-axial copper cables with lengths up to at least 2 m.
 - Channel loss budget in informative Annex to provide <u>information</u> on parameters associated with test points TP0 and TP5 that might not be testable in an implemented system.

Channel – informative channel

• Cable assembly and Host IL tied to channel IL

Note: The 6.875 dB includes via allowances for BGA and connector footprint

Test Fixtures – adopted - update

Note: 2.3 dB MCB PCB includes test point IL and MCB Via allowance is 0.2 dB

Tx/Rx compliance at TP2/TP3

Note: The 6.875 dB includes via allowances for BGA and connector footprint

Tx requirements - compliance at TP2

MTF and COM CA Host Adder Insertion Loss is ~ 10.97 dB

Choices

Review: Parameters we are looking to specify

Level separation mismatch ratio Reset(min.)

V_f and the ratio of P_{max}/V_f

Subclaus

reference

93.8.1.3

93.8.1.3

93.8.1.3

93.8.1.3

136.9.3.4

92.8.3.3

92.8.3.4

136.9.3.1.2

136.9.3.1.2

120D.3.1.2

Value

30

1.9

30

1200

See Equation (136-6)

See Equation (92-7

See Equation (92-3

0.354

 $0.49 \times v_{i}$

0.95

mV

v

mV

mV

dB

dB

dB

- □ Choice c might be suggested from the doubled baud rate used for 50 G PAM4
- \Box Choice e might be suggested since the fit is using N_v=200. The longer time range of the step response would have better sensitivity to loss.

□ Recommend the choice be used for all 100 Gb/s PMDs which use the fitted pulse parameters

	N_v (UI)	N_b (UI)	V_f (mV)	P_max/V_f
а	13	9	350	0.446
b	16	12	359	0.436
С	26	22	371	0.411
d	44	40	385	0.397
е	200	-	387	0.397

Mellitz_3ck_01a_0919.pdf

Tx requirements - compliance at TP2

$$\text{SNDR} = 10 \log 10 \left(\frac{P_{max}^2}{(\sigma_e^2 + \sigma_n^2)} \right)$$

- SNR_{Tx} is used in the COM computation to model transmitter noise and distortion. This is controlled in the transmitter with the transmitter signal to noise distortion ratio (SNDR) specification
- □ It's acquire from a fitted pulse response at tp0a
 - P_{max} is the peak of the pulse response
 - + $\sigma_{\rm e}$ is essentially the distortion from a linear response
 - + $\sigma_{\rm n}$ is essentially the crosstalk and all other external noise

 $\Box \sigma_{0a} = \sqrt{(\sigma_e^2 + \sigma_n^2)}$ is the voltage RMS of an AWGN source

SNDR dB	SNR_ISI dB	Pmax/Vf	VfmV
32.32	34.58	0.45	378.95
30.97	29.24	0.48	380.06
31.60	33.47	0.43	379.54
32.35	33.09	0.40	370.73

Highlighted are candidates for spec limit

Need to check with more CR host channels

Mellitz_3ck_01a_0719.pdf

Tx compliance at TP2

Table 162–11—Summary of transmitter specifications at TP2 (continued)

Parameter	Subclause reference	Value	Units
Transmitter output waveform abs step size for $c(-1)$, $c(0)$, and $c(1)$ (min.) abs step size for $c(-1)$, $c(0)$, and $c(1)$ (max.) abs step size for $c(-2)$ (min.) abs step size for $c(-2)$ (max.) value at minimum state for $c(-1)$ and $c(1)$ (max.) value at maximum state for $c(-2)$ (min.)	162.9.3.1.4 162.9.3.1.4 162.9.3.1.4 162.9.3.1.4 162.9.3.1.4 162.9.3.1.5 162.9.3.1.5	0.005 0.05 0.005 0.025 -0.25 0.1	
Signal-to-noise-and-distortion ratio SNDR (min.)	120D.3.1.6	32.2	dB
Output jitter (max.) ² J _{RMS} J3u Even-odd jitter, pk-pk ³	120D.3.1.8 162.9.3.3 120D.3.1.8	0.023 0.115 0.019	UI UI UI
Signaling rate		53.125 ± 100 ppm	GBd
Unit interval nominal		18.82353	ps

¹Measurement uses the method described in 93.8.1.3 with the exception that the PRBS13Q test pattern is used.

²J3u, J_{RMS}, and even-odd jitter measurements are made with a single transmit equalizer setting selected to compensate for the loss of the host channel

³If the measuring instrument is triggered by a clock based on the signaling rate divided by an even number, the even-odd jitter may not be correctly observed.

Tx compliance at TP2

Table 162–11—Summary of transmitter specifications at TP2

Parameter	Subclause reference	Value	Units
Differential pk-pk output voltage (max.) with Tx disabled ¹	93.8.1.3	30	mV
DC common-mode voltage (max.) ^a	93.8.1.3	1.9	V
AC common-mode RMS output voltage, v_{cmi} (max.) ^a	93.8.1.3	30	mV
Differential pk-pk voltage, v _{di} (max.) ^a	93.8.1.3	1200	mV
Effective return loss (ERL) (min.)	162.9.3.4	See Equation (162-6)	dB
Common-mode to differential mode output return loss (min.)	92.8.3.3	See Equation (92–2)	dB
Common-mode to common-mode output return loss (min.)	92.8.3.4	See Equation (92–3)	dB
Transmitter steady-state voltage, $v_f(\min.)$ Transmitter steady-state voltage, $v_f(\max.)$	162.9.3.1.2	0.354 0.6	V
Linear fit pulse peak (min.)	162.9.3.1.2	$0.49 \times v_f$	V
Level separation mismatch ratio R_{LM} (min.)	120D.3.1.2	0.95	

Rx compliance at TP3

Table 162–14—Summary of receiver specifications at TP3

Parameter	Subclause reference	Value	Units
Input amplitude tolerance	162.9.4.1	1200 ¹	mV
Interference tolerance	162.9.4.2	Table 136–15	
Jitter tolerance	162.9.4.3	Table 120D-7	—
Signaling rate	162.9.4.4	$53.125 \pm 100 \text{ ppm}$	GBd
ERL (min.)	162.9.4.5	10	dB
Differential to common-mode input return loss	92.8.4.3	Equation (92-21)	dB

¹Amplitude is measured at TP2.

Rx compliance - interference tolerance

Fable 162–15—Interference	tolerance test	parameters	(TBD
---------------------------	----------------	------------	------

NOTE—The MDI of the host under test is not included in the test channel.

Figure 110-3a-Interference tolerance test setup

CR Channel – informative channel

Figure 93–10—Receiver test fixture and test points

Source: 802.3cd

802.3ck Task Force

Figure 93-5-Transmitter test fixture and test points

KR Channel – normative channel

Figure 137–2—50GBASE-KR, 100GBASE-KR2 or 200GBASE-KR4 link (one direction for one lane is illustrated)

Source: 802.3cd

Transmitter and receiver characteristics are defined at TP0a and TP5a.

CR Channel – informative channel

Source: lim_3ck_01a_0919.pdf

Summary

- The updated 2m CR channels with cable assemblies manufacturing variation have IL close to 28.5 dB
 - Data shows ${\sim}0.8-1.0$ dB COM improvement compared to previously generated 29 dB channels
 - QSFP-DD legacy pair can now pass 3 dB COM target, the DD new pair is missing 0.1dB (under development by Molex)
 - ICN has been improved from ~1.5mV to ~1.2mV, mainly coming from ASIC RX footprint NEXT reduction
- 28.5dB loss budget (informative) looks promising for 2m Cu cable assembly baseline consideration

CR Channel

Note: The 6.875 dB includes via allowances for BGA and connector

Source: CA COM parameters SNR_TX and eta_0 Baseline Proposal mellitz_3ck_02a_0919.pdf

□ SNR_TX ≤ 32.5 dB □ eta_0 ≥ 8.37E-09 v^2/GHz

Cable assembly compliance TP0-TP4

- Cable assembly IL tied to channel IL
 - Cable assembly baseline has been contingent on channel IL resolution

Cable Assembly

Cable assembly – baseline

Cable assembly specifications – Adopt CL136 – referenced parameters
@ 26.56 GHz, f=0.01≤f≤38 (signaling rate 53.125 GBd).

Cable assembly characteristics summary

Parameter description	Value	Unit
Maximum insertion Loss	19.75	dB
Minimum Insertion Loss	11.15	dB
Minimum ERL	TBD	dB
Differential to Common-mode return loss	Equation(TBD)	dB
Differential to Common-mode conversion loss	Equation(TBD)	dB
Common-mode to common-mode return loss	Equation(TBD)	dB
Minimum COM	TBD	dB

http://www.ieee802.org/3/ck/public/19_03/diminico_3ck_01_0319.pdf

Cable Assembly COM- Baseline

- COM consistent with methodology CL136 signaling rate 53.125 GBd
- COM parameter values TBD

Table 136–18—COM	parameter	values
------------------	-----------	--------

Parameter	Symbol	Value	Units
Signaling rate	fb	26.5625	GBd
Maximum start frequency	f_{\min}	0.05	GHz
Maximum frequency step ^a	Δf	0.01	GHz
Device package model Single-ended device capacitance Transmission line length, Test 1 Transmission line length, Test 2 Single-ended package capacitance at package-to-board interface Package transmission line characteristic impedance	C_d z_p C_p Z_c	1.8×10^{-4} 12 30 1.1×10^{-4} 95	nF mm mn nF Ω
Single-ended reference resistance	R ₀	50	Ω

Table 136-18-COM parameter values (continued)

Parameter	Symbol	Value	Units
Single-ended termination resistance	R _d	50	Ω
Receiver 3 dB bandwidth	fr	0.75 × fb	GHz
Transmitter equalizer, minimum cursor coefficient	c(0)	0.6	—
Transmitter equalizer, 1 st pre-cursor coefficient Minimum value Maximum value Step size	c(-1)	0.25 0 0.05	-
Transmitter equalizer, 2 nd pre-cursor coefficient Minimum value Maximum value Step size	c(-2)	0 0.1 0.025	-
Transmitter equalizer, post-cursor coefficient Minimum value Maximum value Step size	c(1)	0.25 0 0.05	_
Continuous time filter, DC gain Minimum value Maximum value Step size	SDC	-20 0 1	មិមិមិ មិ
Continuous time filter, DC gain 2 Minimum value Maximum value Step size	SDC1	6 0 1	មិ មិ មិ
Continuous time filter, zero frequency for $g_{DC} = 0$	f_z	fb / 2.5	GHz
Continuous time filter, pole frequencies	$f_{p1} \\ f_{p2}$	f _b / 2.5 2 × f _b	GHz GHz
Continuous time filter, low-frequency pole/zero	<i>flf</i>	<i>f</i> b / 40	GHz
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	A _v A _{fe} A _{ne}	0.415 0.415 0.604	V V V
Number of signal levels	L	4	—
Level separation mismatch ratio	R _{LM}	0.95	—
Transmitter signal-to-noise ratio	SNR _{TX}	32.5	dB
Number of samples per unit interval	М	32	_
Decision feedback equalizer (DFE) length	Nb	12	UI
Normalized DFE coefficient magnitude limit for $n = 1$ for $n = 2$ to N_b	b _{max} (n)	0.7 0.2	-
Random jitter, RMS	σ _{RJ}	0.01	UI

http://www.ieee802.org/3/ck/public/19_03/diminico_3ck_01_0319.pdf

Proposals for parameters- contributions required

- TX Parameters Table 162–8 transmitter specifications at TP2
 - Suggest host loss budget slide 9
- RX Parameters Table 162–11 receiver specifications at TP3
 - Suggest host loss budget slide 9
- Cable assembly Table 162–13—Cable assembly characteristics
 - Cable assembly baseline has been contingent on channel IL resolution
 - Suggest cable assembly loss budget slide 12
- Channel 162.10 Annex 162A Channel information TP0-TP5
 - Consider <u>differences</u> in 28 dB channels that pass COM and 28.5 dB channels that fail COM.

Supporting slides

Overview

Component	802.3cd Insertion Loss dB @ 13.28 GHz	802.3ck Insertion Loss dB @ 26.56 GHz (proposed)	Comment
Module Compliance Board (MCB) PCB	1.2	2.3	
Host Compliance Board (HCB) PCB	1.38	2.5	
Host	7	6.875	cd-The 7 dB did not include explicit allowances for BGA and connector footprint ck-The 7 dB includes allowance of 1.34 dB for BGA (0.73) via and connector footprint via (0.61)
Host Connector	1.07+0.62	1.6	cd-The host connector is allocated 0.62 dB of additional margin ck- The host connector mating interface is allocated 0.3 dB variation allowance (not including via)
Mated Test Fixture (MTF)	3.65	6.6	
MTF connector	1.07	1.6	ck-includes 0.2 dB via allowance
Bulk cable and wire attachment	12.62	11.55	cd(3m), ck(2m)
Channel	30	28.5	

• Host and Mated test fixture connector mating interfaces are the same >>1.3 dB + variation 0.3 dB = 1.6 dB.

• Variation is to account for multiple MDIs and other factors other than implementation or margin.

MTF IL = 2.3(MCB PCB)+1.6(conn)+0.2(via)+2.5(HCB PCB) = 6.6 dBHost Channel IL =6.875(Host PCB and via's)+1.6(conn)+2.5(HCB PCB) = 10.975 dBChannel IL =2*6.875(Host PCB and via's)+2*1.6(conn)+11.55(cable and wire termination) = 28.5 dB

802.3ck Figure XX–1–28.5 dB channel insertion loss budget at 26.56 GHz

Cable Assembly

Note: 2.3 dB MCB PCB includes test point IL and MCB Via allowance is 0.2 dB Note: The 6.875 dB includes via allowances for BGA and connector footprint

Channel IL = 28.5 dB @26.56 GHz = 2*(6.875+1.6)+11.55

Note: Channel IL derived from cable assembly host, and mated test fixture IL=28.5 dB @26.56 GHz =2*(6.875+1.6)+11.55