COM 2.51 with rxFFE updates

Richard Mellitz, Samtec

Oct. 3, 2018

Table of Contents

Zero forcing DFE - review

Experimental Features

- Modification in diagram
- Vector forcing DFE/RxFFE
- Algorithm to compute tap for a long FFE

Backup

Computing HH, sampled ISI matrix

COM 2.51 may be used to investigate 2 Signal Architectures

□ Zero Forced DFE (Annex 93A) ... No change

□ One DFE tap and a number of (Rx)FFE taps

• FFE tap adjustments, algorithm modifications, and index corrections added for COM 2.51

Zero Forced DFE (Annex 93A) ... No change

□ Same as Clause 93A COM

Review presented in mellitz_3ck_01_0718 (slide 5)

×10⁻³

The FOM is calculated for each permitted combination of c(-1), c(1), and g_{DC} values per Table 93A–1. The combination of values that maximizes the FOM, including the corresponding value of t_s , is used for the calculation of the interference and noise amplitude in 93A.1.7 and the calculation of COM in 93A.1.

http://www.ieee802.org/3/ck/public/18 07/mellitz 3ck 01 0718.pdf

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

5.44 ×10⁻⁹

Pulse response

One DFE tap and a number of (Rx)FFE taps

Vector forcing algorithm to determine equalization settings
Review presented in mellitz_3ck_01_0718 (slide 5)
Does not necessarily resemble a receiver

Evaluation COM reference Model with Rx FFE

Figure 93A–1—COM reference model

* http://www.ieee802.org/3/ck/public/18 07/mellitz 3ck 01 0718.pdf

COM is based on the pulse response (Annex 93A) \Box Thru (ISI) channel response is $h^{(0)}(t)$ i.e. the pulse response

same as 3ck (93A-24) The pulse response $h^{(k)}(t)$ is derived from the voltage transfer function $H^{(k)}(f)$ (see 93A.1.4) using Equation (93A-24).

$$h^{(k)}(t) = \int_{-\infty}^{\infty} X(f) H^{(k)}(f) \exp(j2\pi ft) dt$$

□ The following uses pulse response plots to describe COM equalization

□ Best FOM for full grid searching for all ctf and Tx ffe values determines setting for the ctf and Tx FFE to compute COM

Adding the long FFE with DFE in COM 2.51

Same full grid as for zero forced DFE except compute C, Hisi, and FOM for each grid setting

- □ Find the Rx FFE taps settings, C , with LMS vector force method
- Readjust sample point
- Apply C to form a new Hisi to be used to compute a the FOM - rvi same as 3ck_01_0718 mellitz_
- □ Settings with be best FOM are used to compute COM

Next... how to find C

Determining FFE taps, C within the inside loop

 $\Box C = ((HH^{T} * HH^{-1} * HH^{T})^{T} * FV^{T}$

- C are the Rx FFE taps
- HH is derived from $h^{(0)}(t)$
- HH is shifted sampled ISI matrix
- $\hfill\square$ FV is the forcing vector ,
 - FV = [... 0, 0, FV0, FV1, 0, 0, 0, 0...]
- □ FV for the cursor tap is
 - FV0= $h^{(0)}(t_s)$
 - This forces the cursor tap to 1
- Modified from mellitz_3ck_01_0718: FV for the post cursor tap (2.51 update)
 - FV1 = sign($h^{(0)}(t_s + T_b)$) min($|h^{(0)}(t_s + T_b)|$) / , $|b_1 h^{(0)}(t_s + T_b)|$)
 - This makes sure the b₁ is not violated for the DFE
- $\square h_{fferx}(f) \text{ is computed from the C found as in eq 93A-21}$

NEW: Adjust C with an inside loop

 \Box H_{isi} is the resampled (1 UI or T_b spaced) pulse response

- □ Apply the Rx FFE with tap values C to H_{isi}
 - Shift, multiply add method
 - This creates H_{isi}_filtered (filtered pulse response)
- Determine an interim FOM for H_{isi}_filtered by dividing the cursor value by the root sum square (RSS) of all the other values and converting to dB
- Incrementally zero out C taps starting with last tap, and compute a new Hisi_filtered and FOM. The code only goes back 4 taps now

□ Use the C with best interim FOM

□ Continue with the grid loop to determine FOM with eq. 93A-36

Additional Inner loop constraints an settings for evaluation

ffe_pre_tap_len	3
ffe_post_tap_len	16

ffe_tap_step_size	0.01
ffe_main_cursor_min	0.7
ffe_pre_tap1_max	0.3
ffe_post_tap1_max	0.3
ffe_tapn_max	0.125

If both set to zero Rx FFE computation is eliminated and default back to original COM method

If set to zero, taps are not quantized

These just break the loop for now.

Included in ZIP

□ config com ieee8023 93a=100GEL-CR DFE 100118.xls

□ config_com_ieee8023_93a=100GEL-KR_DFE_100118.xls

c(-3)		[0]	[min:s
COM_Settings	othe	r keywords 100GEL-CR_DFE1_RxFFE_100118	+
1			

□ com_ieee8023_93a_251.m

Backup: Computing HH, shifted sampled ISI matrix

Start with Pulse Response, and Resample

Let the pulse response be h⁽⁰⁾(t) by

Apply $H_r(f)$, $H_t(f)$, $H_{CFT}(f)$ and $H_{FFE}(f)$ setting to $H_{21}^{(0)}(f)$

Find sample point ts and resample as hisi(n)

Example pulse response for 20 UI

hisi=[hisi1, hisi2, hisi3, hisi4, hisi5, hisi6, hisi7, hisi8, **hisi9**, hisi10, hisi11, hisi12, hisi13, hisi14, hisi15, hisi16, hisi17, hisi18, hisi19, hisi20]

Example: Let hisi(9) correspond to the sample point

Example; 2 pre cursors, 5 post cursors

C is the set of cursors (c1... cn)

Zero pad hsis in preparation for circshift function

[0, 0, hisi1, hisi2, hisi3, hisi4, hisi5, hisi6, hisi7, hisi8, hisi9, hisi10, hisi11, hisi12, hisi13, hisi14, hisi15, hisi16, hisi17, hisi18, hisi19, hisi20, 0, 0, 0, 0, 0, 0]

Find C with Vector Forcing LMS

Define HH array of shifted hisi vectors: HH =

[hisi9,	hisi10,	hisill,	hisi12,	hisi13,	hisi14,	hisi15,	hisi16,	hisi17]
[hisi8,	hisi9,	hisil0,	hisill,	hisi12,	hisi13,	hisil4,	hisi15,	hisi16]
[hisi7,	hisi8,	hisi9,	hisi10,	hisill,	hisi12,	hisi13,	hisil4,	hisi15]
[hisi6,	hisi7,	hisi8,	hisi9,	hisil0,	hisill,	hisi12,	hisil3,	hisi14]
[hisi5,	hisi6,	hisi7,	hisi8,	hisi9,	hisi10,	hisill,	hisi12,	hisi13]
[hisi4,	hisi5,	hisi6,	hisi7,	hisi8,	hisi9,	hisi10,	hisill,	hisi12]
[hisi3,	hisi4,	hisi5,	hisi6,	hisi7,	hisi8,	hisi9,	hisil0,	hisi11]
[hisi2,	hisi3,	hisi4,	hisi5,	hisi6,	hisi7,	hisi8,	hisi9,	hisi10]

FV is the forcing vector , FV =

```
[ 0, 0, FV0, FV1, 0, 0, 0]
```

Such that

FV =HH.'*C.'

And we solve for C

C=((HH'*HH)^-1*HH')'*FV';