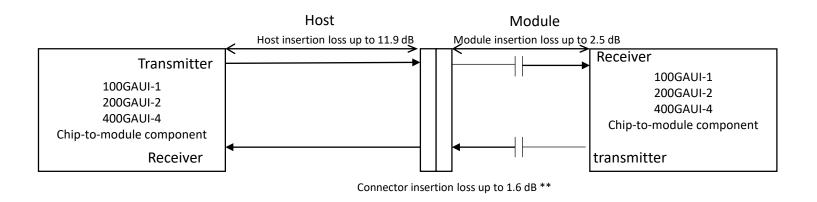
# Baseline Proposal for 100GAUI-1/200GAUI-2/400GAUI-4 C2M Reference Receiver

Mike Li, Intel
Jane Lim, Cisco
Junqing (Phil) Sun, Credo
Rich Mellitz, Samtec

## **Contributors**

Phil Sun, Credo Mike Li, Intel Jane Lim, Cisco Rich Mellitz, Samtec

## **Supporters**


• TBI

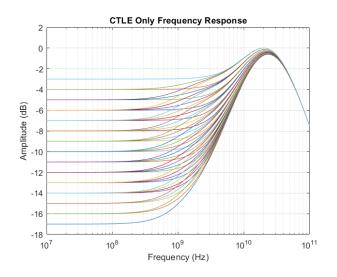
### Introduction

- This baseline proposal is to complete open items of the adopted C2M baseline <u>sun 3ck 04b 0319</u>, including the following items:
- Channel loss allocation
- Reference receiver and its optimization algorithm
- EH, ESMW, and VEC thresholds
- + HCB/MCB characteristics
- Return loss (ERL) parameters for host/module input and output

### **Channel Insertion Loss Allocation**

C2M channel and insertion loss allocation:




\*\* The host connector mating interface is allocated 0.3 dB variation allowance, not including via.

### **Reference Receiver**

- Reference receiver for both host and module output is CTLE + a 4tap DFE with
  - b max(1) limited to 0.5 or lower, and
  - bmax(2,3,4) limited to 0.2.
- \* Reference equalizer adaptation algorithm is **explicitly specified to achieve measurement consistency** (among vendors).
  - Leverage Clause 85.8.3.3.5 linear fit methodology to extract pulse response. Parameter M is no less than 32, Dp is 3, and N is 200.
  - Leverage Annex 93A for optimal phase and DFE tap weight.
  - Apply phase and DFE weight on measured waveforms. Noise and distortion are all kept. Reuse Annex 120E for test point measurement.

<sup>\*</sup> Parameters in magenta throughout this presentation need to be confirmed.

### **CTLE and Noise Filter**



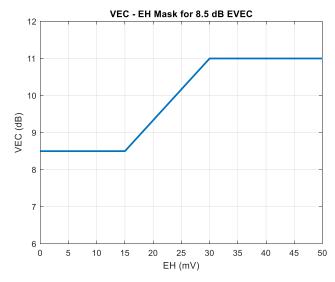
|                        | CTLE       |     |
|------------------------|------------|-----|
| <b>g</b> <sub>DC</sub> | [-14:1:-3] | dB  |
| f <sub>z</sub>         | 12.58      | GHz |
| f <sub>p1</sub>        | 20         | GHz |
| f <sub>p2</sub>        | 28         | GHz |
| <b>g</b> DC2           | [-3:1:0]   | dB  |
| $f_{LF}$               | 1.328125   | GHz |

• CTLE equation is the same as in Clause 93A:

$$H_{ctf}(f) \; = \; \frac{ \left( 10^{\frac{g_{\rm DC}}{20}} + j\frac{f}{f_z} \right) \! \left( 10^{\frac{g_{\rm DC}}{20}} + j\frac{f}{f_{\rm LF}} \right) }{ \left( 1 + j\frac{f}{f_{p1}} \right) \! \left( 1 + j\frac{f}{f_{p2}} \right) \! \left( 1 + j\frac{f}{f_{\rm LF}} \right) }$$

• An additional noise filter is a fourth-order Butter Worth filter with 3dB bandwidth fr=39.8438 GHz:

$$H_r(f) = \frac{1}{1 - 3.414214(f/f_r)^2 + (f/f_r)^4 + j2.613126(f/f_r - (f/f_r)^3)}$$

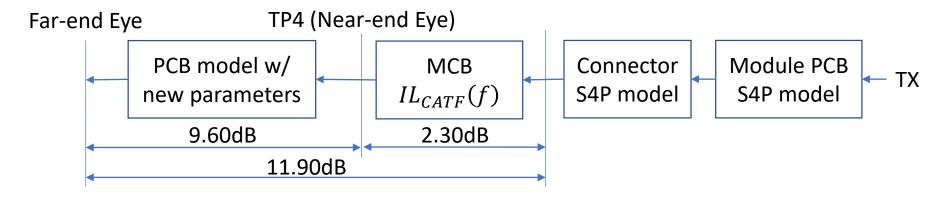

\* CTLE is the same as in sun 3ck 03 0319.

# **Host Output Characteristics (at TP1a)**

| Parameter                      | 400GAUI-8 | 100GAUI-1, 200GAUI-2, 400GAUI-4              |
|--------------------------------|-----------|----------------------------------------------|
| ESMW (Eye symmetry mask width) | 0.22 UI   | TBD                                          |
| Eye height, differential (min) | 32 mV     | 15 mV                                        |
| Vertical Eye Closure (max)     | 12 dB     | 8.5 dB EVEC (Effective Vertical Eye Closure) |

#### **EVEC** definition:

$$\mathsf{EVEC} = \begin{cases} VEC, & \textit{if EH} < 15\,\textit{mV} \\ VEC - 0.1667*(EH - 15)\,\textit{dB}, \textit{if EH is between } 15\,\textit{and } 30\,\textit{mV} \\ VEC - 2.5\,\textit{dB} & \textit{,if EH} > 30\,\textit{mV} \end{cases}$$




# **Module Output Characteristics (at TP4)**

| Parameter                               | 400GAUI-8 | 100GAUI-1, 200GAUI-2, 400GAUI-4 |
|-----------------------------------------|-----------|---------------------------------|
| Near-end Vertical Eye Closure (max)     | -         | 6.5 dB                          |
| Near-end Eye height, differential (min) | 70 mV     | 50 mV                           |
| Near-end ESMW (Eye symmetry mask width) | 0.265 UI  | TBD                             |
| Far-end Vertical Eye Closure (max)      | -         | 7 dB                            |
| Far-end Eye height, differential (min)  | 30 mV     | 20 mV                           |
| Far-end ESMW (Eye symmetry mask width)  | 0.2 UI    | TBD                             |

## **Module Output Far-End Reference Channel model**

- Host IL (11.9dB) MCB IL (2.3dB) = PCB model IL budget (9.6dB)
  - 243.84mm PCB model has 9.60dB at 26.56GHz using Table 92-12 parameters shown in config\_example\_ieee8023\_93a=3ck\_CR\_mellitz\_01\_100219
    - $\gamma_0 = 0$ ,  $a_1 = 3.8206 \times 10^{-4}$ ,  $a_2 = 9.5909 \times 10^{-5}$ ,  $\tau = 5.790 \times 10^{-3}$

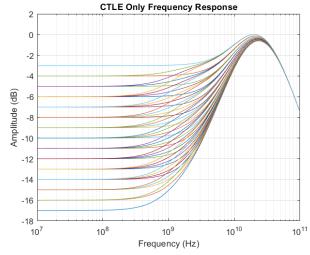


# **HCB/MCB Characteristics**

- HCB characteristics are described in 162B.1.1 where the HCB performs the same equivalent function as the TP2 or TP3 test fixture.
- MCB characteristics are described in 162B.1.2 where the MCB performs the equivalent functionality as the cable assembly test fixture.
- The mated compliance board characteristics are described in 162B.1.3
   where the MCB and HCB perform the equivalent functionality as the
   cable assembly test fixtures.

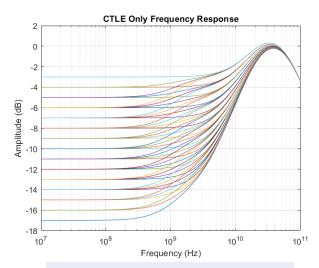
# **Host/Module Input / Output Effective Return Loss**

| Parameter                                                                               | 50GBASE-CR, 100GBASE-CR2,<br>200GBASE-CR4 | 100GAUI-1, 200GAUI-2,<br>400GAUI-4 |
|-----------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|
| Transition time associated with a pulse                                                 | 0.0189 ns                                 | 0.010 ns                           |
| Incremental available signal loss factor                                                | 1.7 GHz                                   | 1.7 GHz                            |
| Permitted reflection from a transmission line external to the device under test         | 0.3                                       | 0.3                                |
| Length of the reflection signal                                                         | 300 UI                                    | 600 UI                             |
| Transmitter steady-state voltage, vf (min.) Transmitter steady-state voltage, vf (max.) | 0.354 V<br>0.6 V                          | 0.35 V<br>0.7 V                    |
| Linear fit pulse peak (min.)                                                            | 0.49 x vf V                               | 0.4 x vf V                         |
| Transmitter (Host/Module output) ERL                                                    | EQ 136-6 at TP2                           | EQ below at TP1a and TP4           |
| Receiver (Host/Module input) ERL                                                        | ≥ 10 dB at TP3                            | ≥ 9 dB at TP1 and TP4a             |


- See 93A.5 for definition of parameters
- 100GAUI-1, 200GAUI-2, 400GAUI-4 Host/Module output ERL

## **Summary**

 Propose 802.3ck task force to adopt these baseline proposals on slides 4-11.


# **Backup Slides**

## **CTLE**



| CTLE and Noise Filter for Receivers A, A2, and B |            |     |
|--------------------------------------------------|------------|-----|
| <b>g</b> <sub>DC</sub>                           | [-14:1:-3] | dB  |
| f <sub>z</sub>                                   | 12.58      | GHz |
| f <sub>p1</sub>                                  | 20         | GHz |
| $f_{p2}$                                         | 28         | GHz |
| g <sub>DC2</sub>                                 | [-3:1:0]   | dB  |
| f <sub>LF</sub>                                  | 1.328125   | GHz |

CTLE for b\_max(1) > 0



| CTLE and Noise Filter for Receivers C and D |            |     |
|---------------------------------------------|------------|-----|
| <b>g</b> <sub>DC</sub>                      | [-14:1:-3] | dB  |
| f <sub>z</sub>                              | 18.88      | GHz |
| f <sub>p1</sub>                             | 28         | GHz |
| f <sub>p2</sub>                             | 53.125     | GHz |
| g <sub>DC2</sub>                            | [-3:1:0]   | dB  |
| $f_{LF}$                                    | 1.328125   | GHz |

CTLE for  $b_max(1) = 0$