Examination of SNDR and noise in COM

Richard Mellitz, Samtec

September 09, 2020

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force Ad Hoc

Purpose

- □ SNR_Tx has a strong impact on COM
- □ Revisit SNDR and SNR_{TX}
- **D** Examine Assumptions
- □ Usage and measurements
- □ Summary/Conclusion

SNDR and SNR_{TX} Background

- \Box SNR_{TX} is related to the SNDR measurement
- There is some thinking that SNR_Tx is the limit for SNDR minus a small implementation penalty
 - I.e. SNR_Tx = SNDR limit ½ dB
- □ SNR_{TX} is used as noise source at the receive "sampler" in COM computations
- □ SNDR is measured at TPOv
- Now ,SNDR is adjusted to a COM reference package and reference source
- □ Let's see what this all means

Clarifying Points of Interest.

- □ TPO is transmitter end of a channel
 - Channel s-parameter are measured between TpO and Tp5
 - These s-parameters are used in the COM computation

- The COM source point (CSP) is the point where transmitter source are reference to, both of signal and noise.
 - In COM a reference package and termination is cascaded to TPO (and TP5).
- □ A transmitter device is measured at TPOv (old TPOa)
- □ In order to be useful for COM computation measurements and specifications are referenced back to the CSP
 - A_{v} , A_{fe} , and A_{ne} are examples

Review of equation Figure 93A-1 with Eq. 93A-30

$$\Box \ \sigma_{TX}^2 = \left[h^{(0)}(t_s)\right]^2 10^{-\frac{SNR_{TX}}{10}}$$
$$\Box \ h^{(0)}(t_s) \text{ is the available signal, } A_s$$
$$\Box \ SNR_{TX} \text{ is } 20^* \text{log10}(A_s/\text{noise})$$
The idea is that noise scales with } A_s

Experiments to understand SNDR measured at TPOv

$$SNDR = 10 log_{10} \left(\frac{p_{max}^2}{\sigma_e^2 + \sigma_n^2} \right)$$
 ... equation 92.9
 \Box Pmax is equivalent to pulse height at

Pmax is equivalent to pulse height at TPOv

- $\hfill\square$ Signal distortion in equivalent to σ_e
 - Could be correlated noise source

 \Box Other noise sources are equivalent to σ_n

Could be uncorrelated

 $\hfill \Box$ The experiment will use a uncorrelated noise source which is σ

$$\Box$$
 So that $SNDR = 10 log_{10} \left(\frac{p_{max}^2}{\sigma^2} \right)$

Set Up the Circuit

□ 2 sources

- 1) Unity pulse source (pulse height at CSP = 1)
- 2) Two type of noise source with same RMS
 - 1) Uniform
 - 2) Gaussian
- □ Selection to transmission line length (losses)
 - 0 mm, 1mm, 60 mm, 30 mm pkg, 150 mm, 300 mm, 600 mm, 900 mm
 - Fb for following example is 53.125 GHz
 - Listed loss will be at 26.56 GHz
 - Except for the package, all lines are 100 ohms and similar to lines used in table 162-19

CSP

CTLE filter is included at M5 but not at M0

For SNR_{TX} , Do filters matter?

Compare SNR at MO and M5 (same channel)

□ 2 sources

- Unity Pulse
- Noise

□ Txffe and CTLE settings are determined using COM algorithms

No Jitter or other noise sources

The **O dB** loss channel with the transition time filter and a Bessel-Thomson filter yields ~ 30 mV RMS noise

SNDR ~= 29.5 dB

- 20*log10(Pmax/rms(noise))
- How much signal and noise make it to the receive sampler

Channel with ~4 dB loss i.e. 30 mm .3ck package Show differ SNR at MO vs. M5

□ For noise use an AWGN with rms(noise) at M0 is 10 mV

□ SNR @M0 ~= 21.3 dB

□ SNR @M5 ~ = 32.7 dB

 \Box This suggest that noise from SNR_{TX} used in COM might be overestimated

□ Next: same experiment with different losses

Interesting Observation

 Noise PDF's measured at the end of a lossy channel (M5) seems to be somewhat independent of the PDF of the source noise

Losses range from 0 d to 35.3 dB (@26.56 GHz)

	-	1mm	60 mm	30 mm pkg	150 mm	300 mm	600 mm	900 mm
IL (db)	0.0	~0.0	2.4	4.0	5.9	11.8	23.5	35.3
SNR (db) @M0	24.1	24.3	23.0	22.3	21.3	17.9	11.9	7.4
SNR (db) @M5	29.5	32.3	33.6	32.5	31.8	29.0	26.0	22.4

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Thoughts on measuring at TPOv and TP5 for COM

It seem that evaluation of SNDR measured at TPOv extrapolated back to point CPS will need to adjust for the actual response H(f)

Let's say we need SNR_Tx to be 33 dB for 36 dB loss channel

33 dB SNR_Tx would back compute and adjusted to 413 mV Av the RMS unfiltered noise at CSP would be 7.354 mV IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Expected SNDR and SNR_Tx

Usage

Finding SNDR limit

- Use Av minimum as in standard
- □ Apply specified filters
- Use AWGN noise w/RMS of 7.354 mV
- □ SNDR limit becomes SNR at M0

Using σ_{TX}

- $\hfill\square$ Reduces to use the raw σ at CSP
- Compute σ_{TX} using integration of Hn⁽⁰⁾(f) (Eq.93A=19, w/o Tx filters) and the raw AWGN

M5

Conclusion

□ SNDR at the TPOv can utilize a raw AWGN (at CSP) of a specified RMS

□ Transmitter noise at the receiver (σ_{TX})should be computed from the specified AWGN at CSP times the integration of the channel response.