

AC Common Mode Noise and Common Mode to Differential Conversion Exploration

Mau-Lin Wu, Tobey P.-R. Li, MediaTek Richard Mellitz, Samtec

IEEE 802.3ck Ad-Hoc

Supporters

- Ali Ghiasi, Ghiasi Quantum
- Geoff Zhang, Xilinx

Background – Common Mode

- Try to analyze the performance impact due to the following two effects
 - P/N skew mismatch and other sources of common mode to differential conversion (SDC21) from channel
 - AC common-mode (см) noise
- Explore the suitable parameters to constraint SDC21
 - SDC21 peak value, IDCR (insertion loss to DC mode conversion ratio), INCM (integrated noise due to common mode)
- Two approaches of mitigating performance degradation due to SDC21
 - Add SDC21/IDCR/INCM spec limit
 - Modify AC CM spec

Performance Impact – SNR_TX Analysis

- Leverage the matlab code from Rich for further analysis [mellitz_3ck_adhoc_01_062420.pdf]
 - Sweeping AC CM values on more IEEE channels
 - Observing SNR_TX loss vs. SDC21 peak had been observed in wu_3ck_01_0720.pdf
 - We explored other indicators, IDCR & INCM, in this contribution Gauging Study: Results with a Source of 30 mV, 10 mV, and 1 mV of AC CM

file	Old SNR _{Tx} (dB)	New SNR _{Tx} (dB) AC CM 30 mV	New SNR _{Tx} (dB) AC CM 10 mV	New SNR _{Tx} (dB) / AC CM 1 mV
Kateri/Bch2_b7p5_7_	32.5	32.0	32.4	32.5
Kateri/Bch2_b6_7_t	32.5	31.9	32.4	32.5
Kateri/CAch2_a2p5_t	32.5	30.4	32.2	32.5
Heck/.Cable_BKP_28dB_0p575m_more_isi_thru1	32.5	31.5	32.4	32.5
Mellitz/Via_Opt2_28dB_THRU	32.5	32.4	32.5	32.5
Zambell/Thru_Link_9_C1_Pr_14_to_Pr_5	32.5	31.7	32.4	32.5
Gore/C2C_PCB_SYSVIA_20dB_thru	32.5	31.3	32.4	32.5
Palkert/THRU_VL5_OD-BP-Channel_16inch_16inch	32.5	25.7	31.0	32.5
Rabinovich/Channel_Thru_P1_to_P2_01.s4p	32.5	30.4	32.2	32.4

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Channels & SDC21 Indicators

- Channels for analysis
 - 151 IEEE KR channels + 19 IEEE C2C channels
 - Channel list in appendix
- SDC21 indicators
 - SDC21 peak
 - The peak value of SDC21 within Nyquist frequency
 - IDCR (dB) insertion loss to crosstalk ratio
 - IDCR (dB) = SDD21 (dB) SDC21 (dB) at Nyquist frequency
 - INCM integrated crosstalk noise
 - Calculate integrated crosstalk noise due to SDC21

Analysis of SDC21 of Channels – Peak SDC21

Analysis of SDC21 and TX SNR

 Evaluation of SNR_TX loss vs. SDC21 peak value with varying CM noise

□ If taking 1 dB SNR_TX loss as threshold,

- It will require SDC21 peak <= -39.1 dB with CM noise = 30 mV
- SDC21 peak <= -33.7 dB with CM noise = 17.5 mV

CM (mV)	30	25	20	17.5	10	1
SDC21 peak (dB)	-39.1	-37.6	-35.4	-33.7	-20	NA

Analysis of SDC21 and TX SNR

Analysis of IDCR and TX SNR (1/2)

- Evaluation of SNR_TX loss vs. IDCR at Nyquist frequency with varying CM noise
 - IDCR (in dB) is computed as SDD21 SDC21

□ If taking 1 dB SNR_TX loss as threshold,

- It will require IDCR >= 26.2 dB with CM noise = 30 mV
- IDCR >= 17.5 dB with CM noise = 17.5 mV

CM (mV)	30	25	20	17.5	10	1
IDCR (dB)	26.2	23.8	20.2	17.5	NA	NA

Analysis of IDCR and TX SNR (1/2)

 Evaluation of SNR_TX loss over IDCR at Nyquist frequency with varying CM noise

Q: How many channels can pass this spec?
Sy outage

Analysis of IDCR and TX SNR (2/2)

 Performance criterion: SNR_Tx loss < 1dB and IDCR at Nyquist frequency > 20 dB

- Outage (%)
 - # of channels with IDCR/SNR_TX loss didn't meet the above criterion out of 170 channels

CM (mV)	30	25	20	17.5	10	1
IDCR Outage			45.	9%		
SNR_TX Outage	61.8%	35.3%	24.7%	20.6%	4.1%	0 %

INCM Model – for Xtalk Noise due to SDC21

 INCM: integrated noise due to common mode [similar to 92.11.3.6.3]

$$\sigma_{CM} = \left(2 \cdot \sum_{n} W(f_n) \cdot VTF_{dc}\right)^{1/2}$$

- *VTF_{dc}*: AC CM TF (voltage transfer function)
 - Ref: [slide 6 in mellitz 3ck adhoc 01 061720.pdf]
- Power weight function

$$W(f_n) = A_{cm}^2 \operatorname{sinc}^2(f_n/f_b) \left[\frac{1}{1 + (f_n/f_T)^4}\right] \left[\frac{1}{1 + (f_n/f_r)^8}\right]$$

- \succ A_{CM} : CM noise amplitude
 - ✓ A_{CM} is $\sqrt{2}$ times higher than AC CM RMS voltage
- \succ f_{T_r}/f_r : cut-off frequency for the transmitting/receiving filter

Analysis of INCM and TX SNR

- Performance criterion: SNR_Tx loss < 1dB and INCM < 1.5 mV</p>
 - INCM: aggregated common mode noise

- Outage (%)
 - # of channels with INCM/SNR_TX loss didn't meet the above criterion out of 170 channels

CM (mV)	30	25	20	17.5	10	1
INCM Outage	1.8%	0 %	0 %	0 %	0 %	0 %
SNR_TX Outage	61.8%	35.3 %	24.7 %	20.6 %	4.1%	0 %

CM Noise at TP0 vs. TP0v

- CM noise value at TPO is adopted for analysis of performance impact here
- Need to derive the relationship of CM noise (RMS) at TPOv to CM noise (RMS) at TPO
 - Strongly depends on IL (insertion loss) of TPO to TPOv test fixture
 - Suggest the following relationship
 - CM(RMS) at TP0v = CM(RMS) at $TP0 * 10^{(-0.5*IL_{TP0_TP0v}/20)}$ (1)
 - Where IL_{TP0_TP0v} is the insertion loss (dB) of TP0 to TP0v test fixture

	- 1 - C					× .	· · · · ·
			TP0 to TP0v IL (dB)				
		1	2	3	4	5	6
Ś	30	28.1	26.4	24.8	23.4	22.1	20.9
P0 (m	25	23.4	22.0	20.7	19.5	18.4	17.4
e at TI	20	18.7	17.6	16.5	15.6	14.7	13.9
noise	17.5	16.4	15.4	14.5	13.6	12.9	12.2
S	10	9.4	8.8	8.3	7.8	7.4	7.0

Corresponded CM noise value at TPOv (in mV)

Ratio (dB) of CM noise at TP0 to CM noise at TP0v

			TPO to TPOv IL (dB)					
		1	2	3	4	5	6	
ک	30	0.57	1.11	1.65	2.16	2.65	3.14	
P0 (n	25	0.57	1.11	1.64	2.16	2.66	3.15	
e at T	20	0.58	1.11	1.67	2.16	2.67	3.16	
noise	17.5	0.56	1.11	1.63	2.19	2.65	3.13	
S	10	0.54	1.11	1.62	2.16	2.62	3.10	

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

Summary & Discussion

- In order to achieve limited SNR_TX loss, there is trade-off between
 - AC CM noise
 - SDC21/IDCR/INCM
- Proposals to mitigate SDC21 impacts by
 - Adopt SDC21/IDCR/INCM spec limits
 - One or all of them
 - Modify AC CM noise RMS spec @ TPOv (KR & C2C, C163 & A120F)
 - Define spec @ TP0: 30 mV \rightarrow 17.5 or 20 mV
 - Derive spec @ TPOv by formula (1) in slide 14 in this contribution

everyday genius

Channel Lists (1/3)

Channel index 1-151: KR Channel index 152-170: C2C

Ind.	Channel	Ind. Ch	annel
1	Cable_BKP_16dB_0p575m_more_isi_thru1.s4p	31 BP	_2conn_85ohm_30dB_HzLzHz_thru.s4p
2	Cable_BKP_28dB_0p575m_thru1.s4p	32 BP	_2conn_85ohm_30dB_LzHzLz_thru.s4p
3	CaBP_BGAVia_Opt2_28dB_THRU.s4p	33 BP	_2conn_85ohm_30dB_Nom_thru.s4p
4	Std_BP_12inch_Meg7_Thru_B56.s4p	34 TH	RU_VL5_OD-BP-Channel_4inch_28inch.s4p
5	DPO_4in_Meg7_THRU.s4p	35 Ca	ble_BKP_28dB_0p575m_thru1.s4p
6	OAch4_t.s4p	36 Sto	d_BP_12inch_Meg7_Thru_B56.s4p
7	CAch3_b2_t.s4p	37 Bc	h2_b7p5_7_t.s4p
8	Bch2_b7p5_7_t.s4p	38 OA	Ach7_t.s4p
9	DPO_12in_Meg7_THRU.s4p	39 Oc	h4_t.s4p
10	Cable_BKP_28dB_0p575m_more_isi_thru1.s4p	40 Oc	h5_t.s4p
11	THRU_VL5_palkert_BP_channel.s4p	41 CA	ch2_a10_t.s4p
12	OAch6_t.s4p	42 Bc	h2_a0_7_t.s4p
13	OAch7_t.s4p	43 Bc	h2_a7p5_7_t.s4p
14	Och1_t.s4p	44 CA	BLE_BP_and_cards_300mm30AWG_2000mm28AWG_300mm30AWG_THRU.s4p
15	Och4_t.s4p	45 BP	Z100sm_IL15to16_BC-BOR_N_N_N_THRU.s4p
16	Och5_t.s4p	46 Th	ru_Cable_Backplane_Pr_14_to_Pr_6.s4p
17	CAch2_a10_t.s4p	47 DP	O_14in_Meg7_THRU.s4p
18	CAch2_b10_t.s4p	48 BP	_2conn_85ohm_30dB_HzLzHz_thru.s4p
19	Bch2_a0_7_t.s4p	49 BP	_2conn_85ohm_30dB_LzHzLz_thru.s4p
20	Bch2_a5_7_t.s4p	50 BP	_2conn_85ohm_30dB_Nom_thru.s4p
21	Bch2_a7p5_7_t.s4p	51 Ca	ble_BKP_28dB_0p575m_thru1.s4p
22	Thru_Link_14_C1_Pr_14_to_Pr_5.s4p	52 OA	Ach4_t.s4p
23	Thru_Link_20_C1_Pr_14_to_Pr_5.s4p	53 CA	ch3_b2_t.s4p
24	Thru_Link_7_C1_Pr_14_to_Pr_5.s4p	54 Bc	h2_b7p5_7_t.s4p
25	CABLE_BP_and_cards_300mm30AWG_2000mm28AWG_300mm30AWG_THRU.s4p	55 Ca	ble_BKP_16dB_0p575m_thru1.s4p
26	BPZ100sm_IL15to16_BC-BOR_N_N_N_THRU.s4p	56 Ca	ble_BKP_16dB_0p575m_more_isi_thru1.s4p
27	B56_Thru_CblBP.s4p	57 Ca	ble_BKP_16dB_0p995m_more_isi_thru1.s4p
28	Thru_Cable_Backplane_Pr_14_to_Pr_6.s4p	58 Ca	ble_BKP_16dB_0p995m_thru1.s4p
29	CaBP_BGAVIas_Opt1_32dB_THRU.s4p	59 Ca	ble_BKP_20dB_0p575m_thru1.s4p
30	DPO_14in_Meg7_THRU.s4p	60 Ca	ble_BKP_20dB_0p575m_more_isi_thru1.s4p

Channel Lists (2/3)

Channel index 1-151: KR Channel index 152-170: C2C

Ind.	Channel	Ind. Channel
61	Cable_BKP_20dB_0p995m_more_isi_thru1.s4p	91 CAch2_a2p5_t.s4p
62	Cable_BKP_20dB_0p995m_thru1.s4p	92 CAch2_a5_t.s4p
63	Cable_BKP_24dB_0p575m_thru1.s4p	93 CAch2_a7p5_t.s4p
64	Cable_BKP_24dB_0p575m_more_isi_thru1.s4p	94 CAch2_b10_t.s4p
65	Cable_BKP_24dB_0p995m_more_isi_thru1.s4p	95 CAch2_b2_t.s4p
66	Cable_BKP_24dB_0p995m_thru1.s4p	96 CAch2_b2p5_t.s4p
67	Cable_BKP_28dB_0p575m_thru1.s4p	97 CAch2_b4_t.s4p
68	Cable_BKP_28dB_0p575m_more_isi_thru1.s4p	98 CAch2_b6_t.s4p
69	Cable_BKP_28dB_0p995m_more_isi_thru1.s4p	99 CAch2_b7p5_t.s4p
70	Cable_BKP_28dB_0p995m_thru1.s4p	100 CAch2_b8_t.s4p
71	THRU_VL5_palkert_BP_channel.s4p	101 CAch2_t.s4p
72	OAch1_t.s4p	102 CAch3_b2_t.s4p
73	OAch2_t.s4p	103 CAch3_t.s4p
74	OAch3_t.s4p	104 CAch4_b2_t.s4p
75	OAch4_t.s4p	105 CAch4_t.s4p
76	OAch5_t.s4p	106 Bch1_3p5_t.s4p
77	OAch6_t.s4p	107 Bch2_7_t.s4p
78	OAch7_t.s4p	108 Bch2_a0_7_t.s4p
79	Och1_t.s4p	109 Bch2_a10_7_t.s4p
80	Och2_t.s4p	110 Bch2_a12p5_7_t.s4p
81	Och3_t.s4p	111 Bch2_a15_7_t.s4p
82	Och4_t.s4p	112 Bch2_a2p5_7_t.s4p
83	Och5_t.s4p	113 Bch2_a5_7_t.s4p
84	Och6_t.s4p	114 Bch2_a7p5_7_t.s4p
85	Och7_t.s4p	115 Bch2_b10_7_t.s4p
86	Och8_t.s4p	116 Bch2_b15_7_t.s4p
87	CAch1_b2_t.s4p	117 Bch2_b2_7_t.s4p
88	CAch1_t.s4p	118 Bch2_b2p5_7_t.s4p
89	CAch2_a0_t.s4p	119 Bch2_b4_7_t.s4p
90	CAch2_a10_t.s4p	120 Bch2_b6_7_t.s4p

Channel Lists (3/3)

Channel index 1-151: KR Channel index 152-170: C2C

Ind. Channel
121 Bch2_b7p5_7_t.s4p
122 Bch2_b8_7_t.s4p
123 Bch3_14_t.s4p
124 Bch4_30_t.s4p
125 Thru_Link_10_C1_Pr_14_to_Pr_5.s4p
126 Thru_Link_11_C1_Pr_14_to_Pr_5.s4p
127 Thru_Link_12_C1_Pr_14_to_Pr_5.s4p
128 Thru_Link_13_C1_Pr_14_to_Pr_5.s4p
129 Thru_Link_14_C1_Pr_14_to_Pr_5.s4p
130 Thru_Link_15_C1_Pr_14_to_Pr_5.s4p
131 Thru_Link_16_C1_Pr_14_to_Pr_5.s4p
132 Thru_Link_17_C1_Pr_14_to_Pr_5.s4p
133 Thru_Link_18_C1_Pr_14_to_Pr_5.s4p
134 Thru_Link_19_C1_Pr_14_to_Pr_5.s4p
135 Thru_Link_1_C1_Pr_14_to_Pr_5.s4p
136 Thru_Link_20_C1_Pr_14_to_Pr_5.s4p
137 Thru_Link_21_C1_Pr_14_to_Pr_5.s4p
138 Thru_Link_22_C1_Pr_14_to_Pr_5.s4p
139 Thru_Link_23_C1_Pr_14_to_Pr_5.s4p
140 Thru_Link_24_C1_Pr_14_to_Pr_5.s4p
141 Thru_Link_25_C1_Pr_14_to_Pr_5.s4p
142 Thru_Link_26_C1_Pr_14_to_Pr_5.s4p
143 Thru_Link_27_C1_Pr_14_to_Pr_5.s4p
144 Thru_Link_2_C1_Pr_14_to_Pr_5.s4p
145 Thru_Link_3_C1_Pr_14_to_Pr_5.s4p
146 Thru_Link_4_C1_Pr_14_to_Pr_5.s4p
147 Thru_Link_5_C1_Pr_14_to_Pr_5.s4p
148 Thru_Link_6_C1_Pr_14_to_Pr_5.s4p
149 Thru_Link_7_C1_Pr_14_to_Pr_5.s4p
150 Thru_Link_8_C1_Pr_14_to_Pr_5.s4p

Ind.	Channel
151	Thru_Link_9_C1_Pr_14_to_Pr_5.s4p
152	Asic_Mezz_Retimer_L10_Thru.s4p
153	Asic_Mezz_Retimer_L23_Thru.s4p
154	Asic_Mezz_Deep_Retimer_L10_Thru.s4p
155	Asic_Mezz_Deep_Retimer_L23_Thru.s4p
156	Impaired_C2C_6p75in_P1_to_P2_thru.s4p
157	C2C_CA_CONN_SYSVIA_12dB_thru.s4p
158	C2C_CA_CONN_SYSVIA_14dB_thru.s4p
159	C2C_CA_CONN_SYSVIA_16dB_thru.s4p
160	C2C_CA_CONN_SYSVIA_18dB_thru.s4p
161	C2C_CA_CONN_SYSVIA_20dB_thru.s4p
162	C2C_PCB_SYSVIA_12dB_thru.s4p
163	C2C_PCB_SYSVIA_14dB_thru.s4p
164	C2C_PCB_SYSVIA_16dB_thru.s4p
165	C2C_PCB_SYSVIA_18dB_thru.s4p
166	C2C_PCB_SYSVIA_20dB_thru.s4p
167	Impaired_C2C_10dB_P1_to_P2_THRU_ExtPEC.s4p
168	Impaired_C2C_16dB_P1_to_P2_THRU_ExtPEC.s4p
169	Impaired_C2C_18dB_P1_to_P2_THRU_ExtPEC.s4p
170	Impaired_C2C_20dB_P1_to_P2_thru_ExtPEC.s4p

SNR_TX analysis: leverage the Matlab code from Rich [mellitz 3ck adhoc 01 062420.pdf]

TPO-TPOv CM Noise Conversion

Conversion of AC RMS from TP0 to TP0v done with integration

