RMS Spectral Width

Re: Comment ID 24 against D1.1

Ramana Murty Broadcom

January 10, 2019

IEEE P802.3cm 400 Gb/s over Multi-mode Fiber Task Force

Introduction

- RMS spectral width is specified as maximum 0.6 nm for both 844 863 nm and 900 918 nm channels in Table 150 7 of Draft 1.1.
- Fiber chromatic dispersion is 22% lower at 900 nm compared to 844 nm.
 - A maximum of 0.65 nm was suggested in king_3cm_01a_0718 for the 900 918 nm channel based on the lower fiber chromatic dispersion at the longer wavelength channel.
- A change from 0.60 to 0.65 nm for the maximum RMS spectral width on the 900 – 918 nm channel will promote supply assurance and reduce the manufacturing/test cost of 900 – 918 nm VCSEL arrays.

RMS Spectral Width

Impact of changing max RMS spectral width 0.60 \Rightarrow 0.65 nm for the 900 – 918 nm channel:

- Mode partition noise penalty Penalty at 844 nm is higher (even with Uw 0.65 nm at 900 nm).
- TDECQ filter reference response
 Calculated at 918 nm.

MPN

The product of the fiber chromatic dispersion D and RMS spectral width U_W is a figure of merit for the mode partition noise penalty.

Product D·U_W is lower for the 900 – 918 nm channel with a max U_W of 0.65 nm when compared to the 844 – 863 nm channel with max U_W of 0.60 nm.

λ (nm)	D (ps/(nm·km)) ¹	Max U _w (nm)	Product D·U _w (ps/km)	
900	-89.8	0.60	-53.9	
		0.65	-58.4	Lower
844	-115.7	0.60	-69.4	900 nm

 Using other fitted values to the fiber chromatic dispersion model leads to the same conclusion as above:

$$U_0 = 1320 \text{ nm}$$
 $S_0 = 0.11 \text{ ps/(nm}^2 \cdot \text{km})$
 $U_0 = 1316 \text{ nm}$ $S_0 = 0.10275 \text{ ps/(nm}^2 \cdot \text{km})$
OM5 $U_0 = 1328 \text{ nm}$ $S_0 = 0.093477 \text{ ps/(nm}^2 \cdot \text{km})$

■ The maximum RMS spectral width of 0.60 nm for the 850 nm channel is compatible with other Standards (e.g. P802.3cm SR8; 802.3cd SR4).

^{1.} Fiber chromatic dispersion calculated using 10 GbE spreadsheet methodology with zero dispersion wavelength U_0 of 1320 nm and zero dispersion slope S_0 of 0.11 ps/(nm²·km).

TDECQ Filter Bandwidth

■ The TDECQ filter replaces the MMF and receiver with an effective 4th order Bessel-Thompson filter.

Element	Unit	Minimum Bandwidth ¹ at 918 nm		
		OM3 70m	OM4 100m	OM5 150m
Modal Dispersion	MHz·km	1208	1846	2885
Chromatic Dispersion 0.60 → 0.65 nm	MHz·km	3770 → 3480	3770 → 3480	4299 → 3968
Modal Dispersion	−3dBo GHz	17.3	18.5	19.2
Chromatic Dispersion 0.60 → 0.65 nm	−3dBo GHz	53.9 → 49.7	37.7 → 34.8	28.7 ⇒ 26.5
Receiver	−3dBe GHz	13.28125	13.28125	13.28125

■ TDECQ reference filter bandwidth decreases by a negligible amount when the maximum RMS spectral width is changed from 0.60 to 0.65 nm for the 900 – 918 nm channel. The reference filter bandwidth of 9 GHz noted in Section 150.8.5 of Draft 1.1 can be used without any change.

λ (nm)	Max U _w (nm)	TDECQ Filter –3dBe BW (GHz)			
		OM3 70m	OM4 100m	OM5 150m	
918	0.60	9.05	9.08	9.01	
918	0.65	9.04	9.05	8.96	

Calculations by Jonathan Ingham.²

^{1.} Fiber chromatic dispersion model with $U_0 = 1320$ nm and $S_0 = 0.11$ ps/(nm²·km) for OM3 and OM4, and $U_0 = 1328$ nm and $S_0 = 0.093477$ ps/(nm²·km) for OM5. Minimum EMB guidance from IEC, see kolesar 3cm 01 1118.pdf.

^{2.} Model described in ingham_3cm_02_0918.pdf.

Summary

[Comment on Draft 1.1]

■ Propose maximum RMS spectral width of 0.65 nm for the 900 – 918 nm channel.