

Rate control for Ethernet congestion management

Hugh Barrass (Cisco Systems)

- 3 (& ½) types of rate control
- Interface & Management
- Remote rate control request
- Conclusions and proposals

3 (& ½) types of rate control

Rate control will fix a link at a reduced rate

There are 3 distinct applications that require this

Hence the need for 3 types of rate control...

... plus a hybrid between two of these types

- a) Constant (per packet) overhead Covers encapsulation cases
- b) Limited (payload) bit rate

 For non 10x bit rates or per bit overhead
- c) Limited packet rate

 For packet processing limitations
- NB FEC requires a hybrid of a) & b) Includes fixed plus per bit overhead

Constant packet overhead

Explored in detail in daines_cmsg_1_0409.pdf (thanks Kevin)

Becomes a significant problem for inline MACsec implementations
... or other "dongle" encapsulator applications

Inline encapsulators (dongles) must be economic devices
Small buffers, limited smarts (maybe line powered)

Network performance across constricted link sucks!

Limited payload bit rate

Example in barrass_1_0704.pdf for high speed NIC

Ethernet link rate exceeds NIC bus rate, creating constriction

Limited intelligence & buffer in NIC – arbitrary packet drop

Also applies for .3ah (EFM-DSL) CPE devices

Very simple CPE, with limited buffering,

Bridges between (e.g.) 100Mb LAN & 30Mb WAN links

Can be used as a friendlier way of enforcing SLA

Link is limited to customer bit rate instead of policing & packet drop

Better overall network performance (if customer makes use of it)

Limited packet rate

No specific demand for this as yet, but...

... applications are easy to imagine

Device with limited lookup engine rate

(e.g. cheap 10G)

Interrupt driven or microcoded NIC

Must service each packet before proceeding with next

DMA allows high bit rate for large packets

- 3 (& ½) types of rate control
- Interface & Management
- Remote rate control request
- Conclusions and proposals

Interface to MAC client (now)

Currently specified in Clauses 4 & 2 (31)

... differently in each 🕾

4.3.2 function TransmitFrame

Includes TransmitStatus – to indicate success

Clause 2 defines MA_DATA.request

Used in 31 (MAC control sublayer)

North & South interfaces to optional sublayer are different ...

... causing historical anomaly

Timing / pipelining not defined

Literal interpretation of standard would make QOS impossible!

Interface to MAC client (needed)

Cleaner definition should include .acknowledge

Indicates that frame transmission is inevitable

Client may assert, remove or change request until acknowledge

Addition of acknowledge controls timing

MAC/PHY layer can specify pipelining

MAC client can define queue draining

MAC client has no concept of time

MAC & PHY defines real time frame timing

MAC is ideal place to define rate control

Management

Rate control needs a management interface

A means of telling the MAC what rate is required

Management can currently set rate by choosing PHY

New MIB object(s) – Clause 30

3 parameters to define:

Per packet overhead (IPG increase)

Maximum payload rate (IPG stretch)

Maximum packet rate

Outstanding question – real time or relative

Could be % of max PHY rate but real time more straightforward

- 3 (& ½) types of rate control
- Interface & Management
- Remote rate control request
- Conclusions and proposals

Remote rate control request

A case can be made for defining a remote mechanism

A device can tell its link partner to limit the Tx rate In addition to the MIB method

Example configuration (justification for rate control)

Network management could set egress rate control on BSB

But end station may be moved arbitrarily

Much more convenient for end station to signal its requirement

Request definition

Rate control is pseudo static

No real time requirement

Two suggestions (so far)

Slow protocol frame

Similar to .3ah OAM

Defined entirely within 802.3 (OAM layer?)

Piggy-back on LLDP

Discovered device parameter includes rate limit

Would need modification to 802.1

Both cases need remote MIB attributes

Identical to Tx rate limit – but specifies max Rx rate

- 3 (& ½) types of rate control
- Interface & Management
- Remote rate control request
- Conclusions and proposals

Summary

- 3 (& ½) types of rate control
- Changes needed to MAC client interface
- MIB attributes for rate control
- Define remote rate control request

Proposals

- Agree that description of 3 rate control mechanisms be added to Clause 4 (& 4A)
- Agree that Clause 4 & Clause 2 (31) be changed to clean up MAC client interface
- Agree that MIB attributes be added to Clause 30
- Agree that remote rate control request be defined

Outstanding issues

- Rate control definition in real time or relative to PHY speed?
- Remote request based on OAM or LLDP?
- Definition of client interface to include pipelining restrictions?

Finally...

This slide set is 2/3 towards a baseline With consensus, baseline could be prepared Ideally ready for March Plenary

Close open issues

& address any new ones...

Baseline must be sufficient to start draft Complete description of technical solution Leaves editorial control to editor