Congestion Notification Mechanisms in 802 networks

January 5, 2005

Agenda

- Market Potential
- Requirements and Scope
- Congestion Notification mechanisms
- Proposal for L2 mechanism L2-CI
- Summary

Market Potential

Emerging Blade Usage Models

- Blades are increasingly being deployed in BE & MT applications
- Ethernet is the default fabric of choice for both Enterprise and Telco Blade servers
 - In addition to Ethernet, Blades use Fiber Channel and Infiniband® for supporting Storage and Inter-processor communication traffic today
- Ethernet Blades are a growing piece of Telco pie ~ 26% of Telco servers by '07 – In-Stat/MDR

NAS = Network Attached Storage

Storage Components Market

- FC continues to be the dominant SAN technology, ~70% MSS into '07
- iSCSI adoption has been slow despite being more cost effective
- F500 IT concerns include
 - Security
 - Performance -- Ethernet behaves poorly in congested environments, packet drops significant, adversely affects storage traffic

Improving Ethernet congestion management can accelerate iSCSI adoption – addresses IT perception & reality

Ethernet Opportunity for Clustering and IPC

WORLDWIDE INFINIBAND SERVER REVENUE OPPORTUNITY BY FORECAST SCENARIO 2003-2006

Source: IDC, 2003

■ Conservative■ Optimistic

- Clustering -- Highest growth in the "Technical Capacity" Servers ~ 20% of High Performance Computing (HPC) market by 2007
 - Clusters built using low cost servers connected by a high performance, low latency fabric
- Users like the cost structure and availability of Ethernet
 - However latency and congestion management are key issues
- Myrinet and Quadrics based fabrics are being deployed to address this need
- Infiniband ® emerging as fabric of choice for clustering

Addressing latency and packet loss opens up the cluster market for Ethernet

Back End (Database) Servers - Workload Characterization

- Limited Networking Traffic (<200 Mbps)
- Storage Traffic is between 1 to 4 Gbps
 - Storage Architectures NAS & SANs
- Within BE 2-3 Gbps of IPC Traffic
 - 80% Small messages for synchronization, locking, etc.
 - 20% Large messages for exchanging data (often > 4KByte)
- Platform Requirements:
 - Offloading / TCP Acceleration to reduce high Server Processor Utilization
 - Improved NIC and Fabric Latency
 - Improved Storage Subsystem Efficiency
 - Reduce probability of packet drops

Requirements and Scope

CM Requirements for Datacenter

- Address IT perceptions:
 - "Ethernet not adequate for low latency apps"
 - "Ethernet frame loss is inefficient for storage"
- Improve Ethernet Congestion Management capabilities that will:
 - Reduce frame loss significantly
 - Reduce end-to-end latency and latency jitter
 - Achieve above without compromising throughput
- Address needs of Short Range Networks
 - Backplanes
 - Clusters
- BUT "Do No harm" if enabled in other topologies

CMSG Discussions - Recap

- Existing Link level mechanisms for congestion control do not improve network throughput
 - Head of line blocking
 - Congestion spreading
 - Increase jitter for high-priority traffic
 - Sacrifices throughput for avoiding frame loss
- Congestion control can be done at data source that is causing congestion
 - However, congestion happens somewhere else (bridges, destination nodes etc.) Congested devices need to provide information to source
 - Data sources can respond by reducing traffic into congested paths

Applicability of CN from Bridges

- Congestion Management is achieved by:
 - 802.1 Bridges providing congestion information
 - Data Sources (ULP) providing Rate Control mechanisms
- Remaining presentation focuses on Ethernet (802.3) networks
- However, 802.1 enhancements may be viable for other networks as well
 - □ 802.17, 802.11 etc.

Congestion Control Elements

Detection

 Could be an AQM like RED – Does not need to be specified by IEEE 802

Notification

- Need a standard way to notify congestion between L2 devices
- Need to be specified by IEEE 802.1

Action

- Rate control/reduction done by source in response to congestion notification
- Left to ULPs (L3 and above) e.g. TCP
 - IETF Domain

Congestion Notification Mechanisms

Congestion Indication mechanisms

- Packet Marking (triggered by congestion event)
 - Forward Marking of the packet experiencing congestion
 - Leave it to upper protocol for getting information back to the source
 - Potentially provide hooks to carry information in reverse direction
 - Or Backward Marking of packets going to congestion source
 - Which source (L2, Upper Protocol, what granularity)?
 - Any other issues?
- Control Message
 - Send control packet to congestion source triggered by congestion
 - Which source? Granularity L2, Upper Protocol, Socket,??
 - Full packet encapsulation through backward control message?
 - Packet generation in data path? Or punt to CPU for control path?
 - Periodic Control messages carrying congestion information
 - To L2 sources, Upper Protocol, ??

More discussion on Backward Notification

- Faster turnaround, support for asymmetric traffic sources
- Backward Notification creates traffic in congested networks
 - Can argue that transient congestions may not affect same paths simultaneously
- How to define granularity
 - Is L2 information sufficient

L3 Marking Mechanisms: IP-CE

- IP CE (Congestion Experienced)
 - IP-CE marking by routers or L2+ Switches when congestion is experienced
- Pros:
 - Will provide ECN capability within L2 Subnet
 - No change required in end-station implementations
- Cons:
 - Enables only IP applications
 - Can not support asymmetric traffic
 - Backward notification
 - How does one standardize this mechanism for Bridges?
 - Layer violations can make maintenance difficult (Support future changes in Upper Layers (IPv4, IPv6 etc.)
 - Security challenges IPSec Tunnels

L2 Marking Mechanism proposal: L2-CI

- L2-CI (Congestion Indication)
 - Marking by bridges in L2 header during congestion
- Pros:
 - Standardized congestion notification mechanism in L2 networks
 - Clean layering, ULP-agnostic
 - L2-CI and TCP-ECN together provide hierarchical mechanism
 - Equivalent to 802.1p and DSCP for CoS
- Cons:

□ Removeres L2 header modification/extension for data frames

L2-CI: details

Layered view of network

L2-CI: What it is and is not

- Is:
 - Mechanism for MAC Clients to provide congestion information
 - Enables MAC Clients to pass this information to upper layers (in end-systems typically) – API enhancements
 - Enables triggering Rate Controllers in upper layers
- Is Not:
 - Does not define congestion detection mechanism for MAC Clients
 - Does not define Rate Controllers in MAC Client
- How to achieve:
 - Use CFI bit in Tag Header
 - DE for Provider Bridge applications, CI for short-range networks
 - Definition of new L2 header (FESG can be leveraged)

Bridge Role:

End Station
Apps
OS/ULP
Switch
802.1 Bridge (MAC Client)
802.3 MAC

802.3 MAC

802.3 Iink

802.3 link

- AQM to detect congestion
- When AQM threshold is exceeded, mark the packets (e.g. with probability for RED) on L2 header to indicate that "this" packet experienced congestion
 - Actual position(s) in header TBD

End - Station Role:

- Copy L2-CI information from L2 header
- Pass it to Upper Layer through API (enhanced)
 - E.g. NDIS API may need to be enhanced to carry additional information
 - Should be easier to handle in Chimney architecture for offload engines
- ULP = TCP/IP
 - IP to copy L2-CI information received via enhanced-API to IP-CE bit before handing to TCP flow
 - TCP remains unchanged (Sends ECN-response back etc.)
- ULP != TCP/IP
 - Use L2-CI information to propagate backwards towards the source
 - Source can take appropriate Rate Controlling decisions
 - Should consider providing space in header for backward notification?
- End Node MAC Client could also generate L2-CI

End Station
Apps

OS/ULP
Switch
NIC Driver
(MAC Client)

802.3 MAC

802.3 MAC

802.3 link

RO2.3 link

RO2.3 link

RO2.3 link

Intel Corp.

L2-CI Considerations

- More than 1 bit congestion information
 - Congestion levels in the path (e.g. XCP)
 - Hook for reverse congestion notification (to be used by non-TCP protocols?)
- Additional information about "capabilities" of flow
 - Equivalent to "ECT" bit in IP ECN
 - At congested devices, "non-capable" flows get packets dropped instead of marked

Summary

- IEEE 802.1 should specify standard mechanism for MAC Clients to provide congestion information to the appropriate sources
- Any congestion notification mechanism defined by IEEE 802.1 should be agnostic of L3-protocols
 - IP-CE is not agnostic to L3 protocols
- L2-CI mechanism provides ULP agnostic Congestion Notification for short range LAN topologies
- Modeling data for L2-CI with TCP-ECN shows that L2-CI can provide significant improvement in throughput and latency reduction for short-range networks

Ref: http://grouper.ieee.org/groups/802/3/cm study/public/september04/wadekar 03 0904.pdf

Backup