

Simulations for Incremental Deployment of L2-CI

Tanmay Gupta Manoj Wadekar Gary McAlpine

Intel Corporation November 2004

Purpose

- To study the effect of incremental deployment of L2-CI on system performance
- Mixed environments refer to networks with only some Switches and/or End-Stations upgraded to support L2-CI

- Case 1: Incremental deployment of L2-CI in Ethernet Switches
 - Only some Ethernet Switches in the network are capable for marking L2-CI
- Case 2: Incremental deployment of L2-CI in End-Stations
 - Only some End-Stations convey L2-CI information to IP layer
- Case 3: Interaction between responsive and non-responsive traffic
 - Mix of TCP (responsive) and UDP (non-responsive) traffic

Only Case 1 and Case 2 studied so far

Assumptions

- It is assumed that **non**-ECN capable Switches and End-Stations are transparent to L2-CI information in the frames. Specifically:
 - the switches that do not support L2-CI can still handle (and forward unchanged) the frames with L2-CI marking
 - the end-stations that do not support L2-CI either do not receive L2-CI marked frames (device/switch sending to it removes L2-CI information) or ignore the L2-CI marking in the frame

Case 1: Switch support for L2-CI

 An L2-CI capable switch marks Ethernet frames instead of dropping them based on RED (or any other AQM)

Case1: Topology

All Links except one = 10 Gbs

Application = Database access

Peak Throughput possible = ~2.2 GB/s DB Entry + ~2.2 GB/s DB Query

Workload distribution = Exponential (8000)

ULP Packet Sizes = 1 Byte to ~85KB

TCP Window size = 64KB

Case1: Scenarios

- NoFC_RED
 - No Switches are L2-CI capable
- ECN_RED_Mix_Switch
 - Only Shelf_Sw_1 L2-CI capable
- ECN_RED
 - All Switches are L2-CI capable

Note:

1. All End-Stations are L2-CI capable in all the above scenarios

Application DB Entry Throughput & Response Time (Buffer = 32 KB per Switch Port)

Incremental network upgrade shows proportional performance improvement

Application DB Query Throughput & Response Time (Buffer = 32 KB per Switch Port)

Case 2: End-Station support for L2-CI

 L2-CI capable destination End-Stations convey L2-CI information to the IP layer

CCT(CI Capable Transport) Bit

- In our simulations, we used a new bit to convey the ECN capability with each Ethernet frame
- Used by Ethernet switches to determine if it should do
 - Random Early Detection and mark CI (CCT=1)
 OR
 - Random Early Discard (CCT=0)
- In our simulations, the IP ECT bit is mapped to L2 CCT

Case 2: Topology

All Links except one = 10 Gbs

Application = Database access

Peak Throughput possible = ~2.2 GB/s DB Entry + ~2.2 GB/s DB Query

Workload distribution = Exponential (8000)

ULP Packet Sizes = 1 Byte to ~85KB

TCP Window size = 64KB

Case 2: Scenarios

- NoFC_RED
 - No End-Station is L2-CI capable
- ECN_RED_Mix_Endstation
 - Only Server_1, Server_3, Client_2, Client_5 are L2-CI capable
- ECN RED
 - All End-Stations are L2-CI capable

Note:

- All switches are L2-CI capable in all the above scenarios
- In modeling, it is assumed that the TCP ECN capability negotiation takes into account L2-CI capability of the End-Station

Application DB Entry Throughput & Response Time (Buffer = 32 KB per Switch Port)

Incremental upgrade of End-Stations shows proportional performance improvement

Application DB Query Throughput & Response Time (Buffer = 32 KB per Switch Port)

- Simulations show that incremental deployment of ECN and L2-CI
 - should not adversely affect performance
 - shows improvement in performance

Next Steps

- Simulations with mix of TCP and UDP traffic flows
- Study need for CCT and the conditions under which it should be set
- Compare relative performance of messaging vs. marking
- Study use of L2-CI (and similar) mechanisms for non-TCP protocols