400GBASE-ZR PCS/PMA Baseline Proposal

Ilya Lyubomirsky, Jamal Riani, Ben Smith, Arash Farhoodfar, Sudeep Bhoja, Inphi Corp., Rich Baca, Microsoft Corp., Gary Nicholl, Cisco Systems, Inc., Mike Sluyski, Acacia Communications, Inc.

IEEE P802.3cn Meeting, Long Beach, CA, Jan. 14-15, 2019

Supporters

- Pete Anslow, Ciena
- Paul Brooks, Viavi Solutions
- John DeAndrea, Finisar
- Mark Gustlin, Cisco
- Tad Hofmeister, Google
- Mark Nowell, Cisco
- Rob Stone, Broadcom
- Steve Trowbridge, Nokia
- Tomoo Takahara, Fujitsu
- Matt Brown, Macom
- Jean-Michel Caia, Fiberhome
- Mark Filer, Microsoft
- Steve Gorshe, Microchip
- Jeffery Maki, Juniper
- Matthew Schmitt, Cablelabs
- Peter Stassar, Huawei
- Chengbin Wu, ZTE
- Chongjin Xie, Alibaba

Summary

$>$ OIF 400ZR 0.10 Draft specs. have been provided by OIF to IEEE 802.3cn via the liaison letter of Nov. 8, 2018
> At Nov. 2018 meeting, the 802.3cn Task Force adopted the OIF 400ZR modulation format (DP-16QAM) and FEC (CFEC) for 400GBASE-ZR; straw poll showed strong support (38 to 0) for adopting OIF 400ZR framing
> This presentation proposes the OIF 400ZR framing format for 400GBASE-ZR PCS and PMA, providing sufficient detail for an initial draft baseline

High Level View

400ZR PCS and PMA Architecture Proposal

GMP Mapping to 400ZR Frame

ZR Frame Structure

- 400ZR frame uses the 16×120-bitAMs defined by clause 119 [IEEE 802.3bs]
- Immediately following the 1920 bit AM are 1920 bits of all-Zero's PAD
- 1280 bit ZR OH area includes GMP mapping bytes
- An additional 20b PAD follows the ZR OH to provide 257b block alignment in the payload area

ZR Multi-Frame Structure

ZR Frame Overhead

- GMP Overhead (JC Bytes OH) is carried once per GMP payload envelop (once per 4 -frame multiframe)
- It carries the encoded 14-bit $\mathrm{Cm}(\mathrm{t})$ (i.e. $4 \times 257 \mathrm{~b}$ block count value) in C1-14 bits of JC1\&JC2 (C1 = MSB, ..,C14= LSB) and the encoded 8 -bit $\mathrm{SC}_{\mathrm{nD}}(\mathrm{t})$ (cumulative value of $\mathrm{C}_{\mathrm{nD}}(\mathrm{t})$) in D1-D7 bits of JC2\&JC3 (D1=MSB,.., D7 = LSB)
- $\mathrm{C}_{\mathrm{m}}(\mathrm{t})$ is protected by a CRC8 (carried in JC3 OH byte) and $\mathrm{SC}_{\mathrm{nD}}(\mathrm{t})$ is protected by a CRC4 (carried in the four LSBs of JC6 OH byte)
- JC3 OH CRC8 calculation is described in ITU-T G. 709 Annex D.3; it uses the generator polynomial $g(x)=x^{8}+x^{3}+x^{2}+1$; JC6 OH CRC4 calculation uses the generator polynomial $\mathrm{g}(\mathrm{x})=\mathrm{x}^{4}+\mathrm{x}+1$
- Multi-frame Alignment Signal (MFAS) overhead byte is duplicated in all four 320-bit OH instances. It is incremented in every 400ZR frame from 0×00 to $0 x F F$, and provides a 256 -frame multi-frame sequence following ITU-T G.709.1 Clause 9.2.1
- STAT overhead byte is present in every 400ZR frame, but only carried in the first of the four 320-bit OH instances. It includes the 1-bit RPF following the definition in ITU-T G.709.1 Clause 9.2.5.1, and 3-bit LDI fields following IEEE 802.3bs

Link Status Monitoring and Signaling (STAT)

STAT OH Byte

Bits\#	1	2	3	4	5	6	7	8
			RES			RES	RD	LD
	RPF					=Am-	=Am	=Am-

- The Remote PHY Fault (RPF) bit indicates signal fail status detected at the remote 400ZR sink function in the upstream direction, and follows ITUT G.709.1 Clause 9.2.5.1 definition. RPF is set to " 1 " to indicate a remote 400ZR PHY defect indication; otherwise, it is set to "0'. The RPF field is located in bit 1 of the STAT field
- Link Degrade Indication (LDI) follows the IEEE 802.3bs definition, which specified three bits in the AM field (am_sf<2:0>) to carry the LDI. Bit am $\mathrm{sf}<2>$ is defined as a Remote Degrade (RD) signal, bit am_sf<1> is defined as a Local Degrade (LD) signal and bit am_sf $<0>$ is reserved. The information in am_sf<0> shall be carried in STAT overhead bit 6 . The status information in am_sf<2> shall be carried in STAT overhead bit 7. The status information in the LD (am_sf<1>) bit shall be carried in STAT overhead bit 8

ZR Frame to SC-FEC Mapping

CRC-32 and MBAS

CRC-32

- A 32-bit CRC is calculated over the 244,664 input bits using the generator polynomial:

$$
G(x)=x^{32}+x^{26}+x^{23}+x^{22}+x^{16}+x^{12}+x^{11}+x^{10}+x^{8}+x^{7}+x^{5}+x^{4}+x^{2}+x+1
$$

- Mathematically, the CRC value corresponding to the 244,664 input bits is defined by the following algorithm:
a) The first 32 bits of the frame are complemented.
b) The 244,664 bits of the protected fields are considered to be the coefficients of a polynomial $M(x)$ of degree 244,663 . (The first bit of the 244,664 input bits corresponds to the $x^{244,663}$ term and the last bit of the 244,664 input bits corresponds to the x^{0} term)
c) $M(x)$ is multiplied by x^{32} and divided (modulo 2) by $G(x)$, producing a remainder $R(\mathrm{x})$ of degree ≤ 31.
d) The coefficients of $R(\mathrm{x})$ are considered to be a 32-bit sequence.
e) The bit sequence is complemented and the result is the CRC.
- The 32 bits of the CRC value are placed with x^{31} term as the left-most bit of the CRC32 field and the x^{0} term as the right most bit of the CRC32 field. (The bits of the CRC are thus transmitted in the order: $\left.x^{31}, x^{30}, \ldots, x^{1}, x^{0}\right)$
- The 6 bit MBAS (see next slide) is appended after the 32-bit CRC

Multi-Block Alignment Signal (MBAS)

- To synchronize the state of the Error Decorrelator (ED) controllers between the receiver and the transmitter, the SC-FEC scheme uses a 7 -bit SC FEC Multi Block Alignment Signal (MBAS) which provides a 128 block sequence.
- The six most significant bits of the 7 -bit MBAS are transferred between source and sink in the 6-bit MBAS overhead, which is located in bits 33 to 38 .
- The numerical value represented in the six MBAS overhead bits will be incremented every two SCFEC blocks

SC-FEC

- The SC-FEC is a 512-bit x 510-bit generalized staircase code that works in conjunction with an error de-correlator
- SC-FEC encoding/decoding processes shown above are defined by reference to ITU-T G.709.2/Y.1331.2 (2018), OTU4 long-reach interface, Annex A

Frame Synchronous Scrambler

- The operation of the scrambler shall be functionally equivalent to that of a framesynchronous scrambler with generating polynomial:

$$
x^{16}+x^{12}+x^{3}+x+1
$$

- The scrambler/descrambler resets to $0 x F F F F$ on row 1 , column 1 of the five SCFEC block structure and subsequent 714 -bit (6×119 b) pad insertion and the scrambler state advances during each bit of the 5xSC-FEC blocks. In the source function, all payload bits (included SC-FEC parity) are scrambled. At the sink the scrambler is synchronized (initialized) at the start of each payload

Convolutional Interleaver

- Each delay operator "D" represents a storage element of 119b. From one row to the next lower row, two delays operators are deleted
- At time i, the input and output switches are aligned at row b_{i} :

1) A block of 119 b is read from row b_{i}
2) The contents of row b_{i} are shifted to the right by 119 b
3) A block of 119 b is written to row b_{i}
4) The switch position is updated to $b_{i+1}=b_{i}+1(\bmod 16)$

- Initialization of the convolutional interleaver is defined to occur at the start of every DSP Super frame, which contains 5 SC-FEC blocks

Hamming Code

- The 119 b outputs of the convolutional interleave are encoded by a systematic $(128,119)$ double-extended Hamming code
- With soft decision decoding, the $(128,119)$ Hamming code increases the NCG from 9.4 dB to $\sim 10.8 \mathrm{~dB}$ with $\sim 7.56 \%$ added overhead

16-QAM Symbol Mapping

Bits are Grey mapped to 16-QAM symbols

Forming DP-16QAM Symbols

- Each 128-bit code word is mapped to 16 DP-16QAM symbols,

$$
S=\left[s_{0}, s_{1}, \ldots, s_{15}\right]
$$

where for $\mathrm{i}=0$ to 15

- $\left(c_{8 i}, c_{8 i+1}\right)$ maps to the in-phase (I) component of the X-pol of s_{i}
- $\left(c_{8 i+2}, c_{8 i+3}\right)$ maps to the quadrature-phase (Q) component of the X-pol of s_{i}
- $\left(c_{8 i+4}, c_{8 i+5}\right)$ maps to the I component of the Y-pol of s_{i}
- $\left(c_{8 i+6}, c_{8 i+7}\right)$ maps to the Q component of the Y-pol of s_{i}
- In each signaling dimension, we define the following map from binary label to symbol amplitude:

$$
(0,0) \rightarrow-3,(0,1) \rightarrow-1,(1,1) \rightarrow+1,(1,0) \rightarrow+3
$$

DP-16QAM Symbol Interleaving

Pilot Symbols

Pilot symbols are added periodically to aid Rx DSP carrier phase recovery and enable absolute phase detection for better performance

- Pilot symbol inserted with a period of 32 QAM symbols
- Different pilot sequences used for X and Y polarizations

DSP Frame Overview

Since $1^{\text {st }}$ TS symbol is known QPSK symbol, it can be processed as a PS in
some cases.
Seeds for pilot PRBS selected so that this also a part of pilot PRBS sequence
$\square 11$ symbols as train sequence
$\square 22$ symbols as super-frame alignment word
$\square 76$ symbols as reserved for the particular usage
FAW: 98 symbols

Pilot symbols
Information, FEC parity

32 symbols

- A DSP frame consists of 3712 symbols; 49 DSP frames are combined into a super frame structure in each X / Y polarization
- Each DSP frame includes an 11 symbols for training. The first of which is a pilot symbol
- Pilot symbols are inserted every 32 symbols to aid the receiver's phase recovery.
- The first DSP frame includes a 22 symbol Frame Alignment Word (FAW), and 76 reserved symbols
- Modulation format is DP-16QAM non-differential

Frame Expansion Rate

Recommendation

Adopt this proposal as baseline for the 400GBASEZR PCS and PMA

