ER, FR and LR interoperability requirements

Pete Anslow, Ciena

IEEE P802.3cn Task Force, Ad Hoc, 4 April 2019

Missing interoperability requirements

- Clause 122 contains interoperability requirements between 400GBASE-FR8 and 400GBASE-LR8
- This contribution proposes that three new subclauses are created (similar to 114.11)
- For 200GBASE-ER4 and 200GBASE-LR4 interop requirements (122.11a)
- For 400GBASE-ER8 and 400GBASE-FR8 interop requirements (122.11b)
- For 400GBASE-ER8 and 400GBASE-LR8 interop requirements (122.11c)
- Clause 139 contains interoperability requirements between 50GBASE-FR and 50GBASE-LR
- This contribution proposes that two new subclauses are created (similar to 114.11)
- For 50GBASE-ER and 50GBASE-FR interop requirements (139.10a)
- For 50GBASE-ER and 50GBASE-LR interop requirements (139.10b)

200GBASE-ER4 and 200GBASE-LR4 interoperation

- ER4 Tx and LR4 Rx overload
- For this combination of PMDs the limiting requirement is on $O M A_{\text {outer }}$

- Consequently, the minimum channel insertion loss is 2.3 dB
- ER4 Tx and LR4 Rx sensitivity
- For this combination of PMDs the limiting requirement is the same for average power and OMA outer
- ER4 Tx ave power min $=0.4 \mathrm{dBm}$ and LR4 Rx ave power $\mathrm{min}=-9.7 \mathrm{dBm}$
- Consequently, the maximum channel insertion loss is 10.1 dB
- LR4 Tx and ER4 Rx overload
- For this combination of PMDs the limiting requirement is on average power
- LR4 Tx ave power max $=5.3 \mathrm{dBm}$ and ER4 Rx ave power max $=-3.4 \mathrm{dBm}$ (rounded to nearest 0.1 dB)
- Consequently, the minimum channel insertion loss is 8.7 dB
- LR4 Tx and ER4 Rx sensitivity
- For this combination of PMDs the limiting requirement is the same for average power and OMA outer
- LR4 Tx ave power min $=-3.4 \mathrm{dBm}$ and ER4 Rx ave power min $=-17.6 \mathrm{dBm}$
- Consequently, the maximum channel insertion loss is 14.2 dB

400GBASE-ER8 and 400GBASE-FR8 interoperation

- ER8 Tx and FR8 Rx overload
- For this combination of PMDs the limiting requirement is on $O M A_{\text {outer }}$
- ER8 Tx OMA outer $\max =6.4 \mathrm{dBm}$ and FR8 Rx OMA outer $^{\max }=5.7 \mathrm{dBm}$
- Consequently, the minimum channel insertion loss is 0.7 dB
- ER8 Tx and FR8 Rx sensitivity
- For this combination of PMDs the limiting requirement is on $O M A_{\text {outer }}$
- ER8 Tx OMA outer $^{\min }=2.4 \mathrm{dBm}$, FR8 Rx OMA outer for $S E C Q$ of $1.4 \mathrm{~dB}=-4.8 \mathrm{dBm}$ and assumed MPI penalty for FR8 channel $=0.3 \mathrm{~dB}$
- Consequently, the maximum channel insertion loss is 6.9 dB
- FR8 Tx and ER8 Rx overload
- For this combination of PMDs the limiting requirement is on average power
- FR8 Tx ave power max $=5.3 \mathrm{dBm}$ and ER8 Rx ave power max $=-4.4 \mathrm{dBm}$
- Consequently, the minimum channel insertion loss is 9.7 dB
- FR8 Tx and ER8 Rx sensitivity
- For this combination of PMDs the limiting requirement is on average power
- FR8 Tx ave power min $=-3.5 \mathrm{dBm}$ and ER8 Rx ave power min $=-18.1 \mathrm{dBm}$
- Consequently, the maximum channel insertion loss is 14.6 dB

400GBASE-ER8 and 400GBASE-LR8 interoperation

- ER8 Tx and LR8 Rx overload
- For this combination of PMDs the limiting requirement is on OMA ${ }_{\text {outer }}$
- ER8 Tx OMA outer $^{\max }=6.4 \mathrm{dBm}$ and LR8 Rx OMA outer $^{\max }=5.7 \mathrm{dBm}$
- Consequently, the minimum channel insertion loss is 0.7 dB
- ER8 Tx and LR8 Rx sensitivity
- For this combination of PMDs the limiting requirement is on $O M A_{\text {outer }}$
- ER8 Tx OMA ${ }_{\text {outer }} \min =2.4 \mathrm{dBm}$, LR8 Rx OMA outer for $S E C Q$ of $1.4 \mathrm{~dB}=-6.6 \mathrm{dBm}$ and assumed MPI penalty for LR8 channel $=0.5 \mathrm{~dB}$
- Consequently, the maximum channel insertion loss is 8.5 dB
- LR8 Tx and ER8 Rx overload
- For this combination of PMDs the limiting requirement is on average power
- LR8 Tx ave power max $=5.3 \mathrm{dBm}$ and ER8 Rx ave power max $=-4.4 \mathrm{dBm}$
- Consequently, the minimum channel insertion loss is 9.7 dB
- LR8 Tx and ER8 Rx sensitivity
- For this combination of PMDs the limiting requirement is on average power
- LR8 Tx ave power min $=-2.8 \mathrm{dBm}$ and ER8 Rx ave power min $=-18.1 \mathrm{dBm}$
- Consequently, the maximum channel insertion loss is 15.3 dB

50GBASE-ER and 50GBASE-FR interoperation

- ER Tx and FR Rx overload
- For this combination of PMDs the limiting requirement is on OMA ${ }_{\text {outer }}$
- ER Tx OMA outer $^{\max }=7.4 \mathrm{dBm}$ and FR Rx OMA ${ }_{\text {outer }} \max =2.8 \mathrm{dBm}$
- Consequently, the minimum channel insertion loss is 4.6 dB
- ER Tx and FR Rx sensitivity
- For this combination of PMDs the limiting requirement is on average power
- ER Tx ave power min $=0.4 \mathrm{dBm}$ and $F R \mathrm{Rx}$ ave power $\mathrm{min}=-8.1 \mathrm{dBm}$
- Consequently, the maximum channel insertion loss is 8.5 dB
- FR Tx and ER Rx overload
- For this combination of PMDs the limiting requirement is on average power
- FR Tx ave power max $=3 \mathrm{dBm}$ and ER Rx ave power max $=-3.4 \mathrm{dBm}$ (rounded to nearest 0.1 dB)
- Consequently, the minimum channel insertion loss is 6.4 dB
- FR Tx and ER Rx sensitivity
- For this combination of PMDs the limiting requirement is on OMA ${ }_{\text {outer }}$
- FR Tx OMA outer $^{\min }=-2.5 \mathrm{dBm}$, ER Rx OMA outer for SECQ of $1.4 \mathrm{~dB}=-15.1 \mathrm{dBm}$ and assumed MPI penalty for FR channel $=0.4 \mathrm{~dB}$
- Consequently, the maximum channel insertion loss is 12.2 dB

50GBASE-ER and 50GBASE-LR interoperation

- ER Tx and LR Rx overload
- For this combination of PMDs the limiting requirement is on OMA outer
- ER Tx OMA ${ }_{\text {outer }} \max =7.4 \mathrm{dBm}$ and LR Rx OMA ${ }_{\text {outer }} \max =4 \mathrm{dBm}$
- Consequently, the minimum channel insertion loss is 3.4 dB
- ER Tx and LR Rx sensitivity
- For this combination of PMDs the limiting requirement is the same for average power and OMA outer
- ER Tx ave power min $=0.4 \mathrm{dBm}$ and LR Rx ave power min $=-10.8 \mathrm{dBm}$
- Consequently, the maximum channel insertion loss is 11.2 dB
- LR Tx and ER Rx overload
- For this combination of PMDs the limiting requirement is on average power
- $L R$ Tx ave power max $=4.2 \mathrm{dBm}$ and ER Rx ave power max $=-3.4 \mathrm{dBm}$ (rounded to nearest 0.1 dB)
- Consequently, the minimum channel insertion loss is 7.6 dB
- FR Tx and ER Rx sensitivity
- For this combination of PMDs the limiting requirement is on OMA ${ }_{\text {outer }}$
- LR Tx OMA outer $^{\min =-1.5 \mathrm{dBm}, ~ E R ~ R x ~ O M A ~}$ outer for SECQ of $1.4 \mathrm{~dB}=-15.1 \mathrm{dBm}$ and assumed MPI penalty for LR channel $=0.6 \mathrm{~dB}$
- Consequently, the maximum channel insertion loss is 13 dB

Subclause 122.7 changes

- Add three sentences to 122.7 as below.

Change the title and contents of 122.7 and its subclauses as follows:
122.7 PMD to MDI optical specifications for 200GBASE-FR4, 200GBASE-LR4, 200GBASE-ER4, 400GBASE-FR8, and-400GBASE-LR8, and 400GBASE-ER8

The operating ranges for the 200GBASE-FR4, 200GBASE-LR4, 200GBASE-ER4, 400GBASE-FR8,-and 400GBASE-LR8, and 400GBASE-ER8 PMDs are defined in Table 122-8. A 200GBASE-FR4, 200GBASE-LR4, 200GBASE-ER4, 400GBASE-FR8, or-400GBASE-LR8, or 400GBASE-ER8 compliant PMD operates on type B1.1, B1.3, or B6_a single-mode fibers according to the specifications defined in Table 122-18. A PMD that exceeds the operating range requirement while meeting all other optical specifications is considered compliant (e.g., a 400GBASE-FR8 PMD operating at 2.5 km meets the operating range requirement of 2 m to 2 km). The 200GBASE-ER4 PMD interoperates with the 200GBASE-LR4 PMD provided that the channel requirements defined in 122.11a are met. The 400GBASE-LR8 PMD interoperates with the 400GBASE-FR8 PMD provided that the channel requirements for 400GBASE-FR8 are met. The 400GBASE-ER8 PMD interoperates with the 400GBASE-FR8 PMD provided that the channel requirements defined in 122.11 b are met. The 400GBASE-ER8 PMD interoperates with the 400GBASE-LR8 PMD provided that the channel requirements defined in 122.11 c are met.

Subclause 139.6 changes

- Add two sentences to the end of 139.6 as below.

Change the title and contents of 139.6 and its subclauses as follows:
 139.6 PMD to MDI optical specifications for 50GBASE-FR, and-50GBASE-LR, and 50GBASE-ER

The operating ranges for the $50 \mathrm{GBASE}-\mathrm{FR}$, and $-50 \mathrm{GBASE}-\mathrm{LR}$, and $50 \mathrm{GBASE}-E R$ PMDs are defined in Table 139-5. A 50GBASE-FR, or $50 \mathrm{GBASE}-\mathrm{LR}$, or 50GBASE-ER compliant PMD operates on type B1.1, B1.3, or B6_a single-mode fibers according to the specifications defined in Table 139-13. A PMD that exceeds the operating range requirement while meeting all other optical specifications is considered compliant (e.g., a $50 \mathrm{GBASE}-\mathrm{FR}$ PMD operating at 2.5 km meets the operating range requirement of 2 m to 2 km). The $50 \mathrm{GBASE}-\mathrm{LR}$ PMD interoperates with the $50 \mathrm{GBASE}-\mathrm{FR}$ PMD provided that the channel requirements for $50 \mathrm{GBASE}-\mathrm{FR}$ are met The $50 \mathrm{GBASE}-E R$ PMD interoperates with the $50 \mathrm{GBASE}-\mathrm{FR}$ PMD provided that the channel requirements defined in 139.10a are met. The 50GBASE-ER PMD interoperates with the 50GBASE-LR PMD provided that the channel requirements defined in 139.10 b are met.

Add subclause 122.11a

- Add 122.11a as below.

Insert 122.11a, 122.11b, and 122.11c after 122.11 as follows:

122.11a Requirements for interoperation between 200GBASE-ER4 and

 200GBASE-LR4The 200GBASE-ER4 and 200GBASE-LR4 PMDs can interoperate with each other (over an engineered link) provided that the fiber optic cabling (channel) characteristics for 200GBASE-LR4 given in 122.10 are met, with the exception of the maximum and minimum channel insertion loss values, which are given in Table 122-20 for the two link directions separately. Attenuators may be used to achieve the required losses.

Table 122-20-Channel insertion loss requirements for interoperation between 200GBASE-ER4 and 200GBASE-LR4

Direction	Min loss	Max loss	Unit
200GBASE-ER4 transmitter to 200GBASE-LR4 receiver	2.3	10.1	dB
200GBASE-LR4 transmitter to 200GBASE-ER4 receiver	8.7	14.2	dB

Add subclause 122.11b

- Add 122.11b as below.

122.11b Requirements for interoperation between 400GBASE-ER8 and 400GBASE-FR8

The 400GBASE-ER8 and 400GBASE-FR8 PMDs can interoperate with each other (over an engineered link) provided that the fiber optic cabling (channel) characteristics for 400GBASE-FR8 given in 122.10 are met, with the exception of the maximum and minimum channel insertion loss values, which are given in Table 122-21 for the two link directions separately. Attenuators may be used to achieve the required losses.

Table 122-21-Channel insertion loss requirements for interoperation between 400GBASE-ER8 and 400GBASE-FR8

Direction	Min loss	Max loss	Unit
400GBASE-ER8 transmitter to 400GBASE-FR8 receiver	0.7	6.9	dB
400GBASE-FR8 transmitter to 400GBASE-ER8 receiver	9.7	14.6	dB

Add subclause 122.11c

- Add 122.11c as below.

122.11c Requirements for interoperation between 400GBASE-ER8 and 400GBASE-LR8

The 400GBASE-ER8 and 400GBASE-LR8 PMDs can interoperate with each other (over an engineered link) provided that the fiber optic cabling (channel) characteristics for 400GBASE-LR8 given in 122.10 are met, with the exception of the maximum and minimum channel insertion loss values, which are given in Table 122-22 for the two link directions separately. Attenuators may be used to achieve the required losses.

Table 122-22-Channel insertion loss requirements for interoperation between 400GBASE-ER8 and 400GBASE-LR8

Direction	Min loss	Max loss	Unit
400GBASE-ER8 transmitter to 400GBASE-LR8 receiver	0.7	8.5	dB
400GBASE-LR8 transmitter to 400GBASE-ER8 receiver	9.7	15.3	dB

Add subclause 139.10a

- Add 139.10a as below.

Insert $139.10 a$ and $139.10 b$ after 139.10 as follows:
139.10a Requirements for interoperation between 50GBASE-ER and 50GBASE-FR

The 50GBASE-ER and 50GBASE-FR PMDs can interoperate with each other (over an engineered link) provided that the fiber optic cabling (channel) characteristics for 50GBASE-FR given in 139.9 are met, with the exception of the maximum and minimum channel insertion loss values, which are given in Table 139-15 for the two link directions separately. Attenuators may be used to achieve the required losses.

Table 139-15-Channel insertion loss requirements for interoperation between 50GBASE-ER and 50GBASE-FR

Direction	Min loss	Max loss	Unit
50GBASE-ER transmitter to 50GBASE-FR receiver	4.6	8.5	dB
50GBASE-FR transmitter to 50GBASE-ER receiver	6.4	12.2	dB

Add subclause 139.10b

- Add 139.10b as below.

139.10b Requirements for interoperation between 50GBASE-ER and 50GBASE-LR

The 50GBASE-ER and 50GBASE-LR PMDs can interoperate with each other (over an engineered link) provided that the fiber optic cabling (channel) characteristics for 50GBASE-LR given in 139.9 are met, with the exception of the maximum and minimum channel insertion loss values, which are given in Table 139-16 for the two link directions separately. Attenuators may be used to achieve the required losses.

Table 139-16-Channel insertion loss requirements for interoperation between 50GBASE-ER and 50GBASE-LR

Direction	Min loss	Max loss	Unit
50GBASE-ER transmitter to 50GBASE-LR receiver	3.4	11.2	dB
50GBASE-LR transmitter to 50GBASE-ER receiver	7.6	13	dB

Thanks!

