Bifrost communications

Jesper Bevensee Jensen

bj(*a*)bifrostcommunications.com

Reach, fan-out, power-budget and dispersion tolerance of a Quasi-Coherent Super-PON

BIFROST COMMUNICATIONS APS

www.bifrostcommunicatins.com

Spin-out from Technical University of Denmark

Jesper Bevensee Jensen CTO, Founder jbj@bifrostcommunications.com

Outline

- 1. What is Quasi-Coherent Detection?
- 2. Sensitivity and reach at 10 Gbps
- 3. Super-PON ONU launch power requirements with QC receivers in the OLT
- 4. Going to 25 Gbps with CD compensation built into the receiver
- 5. Summary

Super-PON Objectives

Super-PON Objectives

To support a passive point-to-multipoint ODN with a reach of at least 50 km, and with at least 1:64 split ratio per wavelength pair

- At least 16 wavelength pairs for point-to-multipoint PON operation
- Support the MAC data rate of 10Gb/s downstream
- Support the MAC data rates of 2.5Gb/s and 10Gb/s upstream
- Tunable transmitters

Potential with Quasi Coherent receivers

- Increase EML transmitter reach to 80 km @ 10 Gbps by including CD compensation in the receiver
- Reduce ONU launch power (and cost) by utilizing –35 dBm sensitivity
- Enable a 25 Gbps line rate, 20 km class for high density applications (e.g. 5G)

jbj@bifrostcommunications.com

Digital Coherent Receiver – The Conventional Way

2 pcs. 90-degree hybrid couplers (8 pcs. 3dB couplers)

π/2

 $\boldsymbol{E}_{\boldsymbol{A}}$

DSP engine operating at sample rate of 2* RX bandwidth •

Bifrost Simplified Quasi-Coherent Receiver

- Only very little equipment (2 PDs, 1 PBS, 1 pcs. 3 dB coupler)
- No DSP (Analog signal processing chip only consumes 10 mW)
- Vast simplification
- Coherent potentially ready for low cost access networks

Experimental Validation @ 10 Gbps

- SFP transmitter, 1550 nm wavelength, 8 dB extinction ratio
- 15 dBm LO power, RIN = -145 dBm/Hz
- 33 GHz PD/TIA bandwidth

1550nm EML transmitter

-35 dBm sensitivity No degradation after 40 km fiber

80 km is possible with CD compensation built into receiver

15 dB better than PIN DD3-6 dB better than APD DD

10 Gbps BER B2B and after 40 km SSMF

25 Gbps Chromatic Dispersion Compensation

Optics modelled in VPI using datasheet values

- 10 MHz LO linewidth, -145 dB/Hz LO RIN, 15 dBm LO power
- PD 3-dB bandwidth = 40 GHz
- PD responsivity 0.7 A/W
- TX Extinction ratio 8dB (1550 nm EML)

Bifrost ASIC EM simulated in Microwave Office

Better than -30 dBm sensitivity B2B and after 20 km SSMF

Time

10

jbj@bifrostcommunications.com

Quasi-Coherent Super-PON

Potential with Quasi Coherent receivers

- Reduce ONU launch power by utilizing the high –35 dBm sensitivity
- Increase EML transmitter reach to 80 km at 10 Gbps by including CD compensation in the receiver
- Enable a 25 Gbps line rate, 20 km class for high density applications (e.g. 5G)

Quasi-Coherent 50 km Super-PON

"To support a passive point-to-multipoint ODN with a reach of at least 50 km, and with at least 1:64 split ratio per wavelength pair"

Conventional Optics requirements		QC-optics Requirements	
Sensitivity	-28.5 dBm	Sensitivity	-35 dBm
ONU launch power	+4 to +9 dBm (requires EML+SOA)	ONU launch power	-2 to +3 dBm (no SOA required)
CD compensation	Optical DCF required for DMLs	CD compensation	Built-into receiver

Quasi-Coherent 80 km Super-PON

"To support a passive point-to-multipoint ODN with a reach of at least 80 km, and with at least 1:64 split ratio per wavelength pair"

QC-optics Requirements				
Sensitivity	-35 dBm			
ONU launch power	+4 to +9 dBm (requires EML+SOA)			
CD compensation	Built-into receiver			
AMP/MUX gain (US)	14.5 dBm			
AMP/MUX gain (DS)	12 dBm			

Quasi-Coherent Super-PON for 25 Gbps and 20 km reach

"To support a passive point-to-multipoint ODN with a reach of up to 20 km, line rate of 25 Gbps and with at least 1:64 split ratio per wavelength pair"

QC-optics Requirements				
Sensitivity	-30 dBm			
ONU launch power	-3 to +2 dBm (EML+SOA)			
CD compensation	Built-into receiver			
AMP/MUX gain (US)	14.5 dBm			
AMP/MUX gain (DS)	12 dBm			

Quasi-Coherent Super-PON Optics Requirements

LO laser

- 15 dBm CW power
- <-145 dBm/Hz RIN
- +/- 1 GHz wavelength stability

Wavelength plan

• 40 GHz spectral window allocated for each channel

PD/TIA

- 40 GHz BW (to avoid burst-to-burst retuning)
- PIN (APD not required)
- Linear TIA

SUMMARY

Quasi-coherent	10 Gbps (50 km)	10 Gbps (80 km)	25 Gbps (20 km)
Up to -35 dBm	50 km C-band	80 km C-band	20 km C-band
	transmission	transmission	transmission
Up to -30 dBm	CD-compensation	CD-compensation	CD-compensation
sensitivity @25 Gbps	in receiver	in receiver	in receiver
	-2 to +3 dBm ONU	+4 to +9 dBm ONU	-3 to +2 dBm ONU
	launch power	launch power	launch power