Super-PON Link Budget Analysis Revised Fiber loss

IEEE P802.3cs, July 2019 Liang Du, Google

Loss of ODN Components

Loss budget		
	Loss Max	
Components	(dB)	Comment
50km Fiber	12	0.24 dB/km
λ Router	6.6	4 to 6.6
1x64	21.5	
splice/connector	1	arbitrary
Total	41.1	

- Worst case numbers are used for the splitters and the CAWG
- Typical numbers are used for the fiber and splice/connector
- Could assume the use of MZI-AWG for a loss of 3.3 dB
 - Could add 1.5 dB to this to account for the initial lower volume optimization phase
 - Total link budget of 39.3

Loss of ODN Components worst case

Loss budget L-band			
	Loss Max		
Components	(dB)	Comment	
50km Fiber	17.5	0.35 dB/km	
λ Router	6.6	4 to 6.6	
1x64	21.5		
splice/connector	2.2	2*0.5+6*0.2	
Total	47.8		

Loss budget C-band		
	Loss Max	
Components	(dB)	Comment
50km Fiber	13.75	0.275 dB/km
λ Router	6.6	4 to 6.6
1x64	21.5	
splice/connector	2.2	2*0.5+6*0.2
Total	44.05	

- Worst case numbers are used for the splitters, CAWG, fiber, and splices
- The increase in link length/complexity magnifies the margin left for components

Downstream power levels

- High output power of amplifier is a big problem for worst case
 - $\circ~$ A class 4 laser will be needed
 - Likely to have many NL effects
- Using typical values still requires a challenging booster amplifier
 Still a class 3 laser

Location	DS/WL [dBm]	DS total [dBm]
А	-1.9	
В	-7.4	4.6
С	12.6	24.6
D	11.6	23.6
E	-29.5 PR40	

Location	DS/WL [dBm]	DS total [dBm]
A	4.8	
В	-0.7	11.3
С	19.3	31.3
D	18.3	30.3
E	-29.5 PR40	

Performance: EML + pre-amp (10G)

Early samples shows we can achieve RX sensitivity -38dBm at BER=1e-4

- measured at the input of pre-amp
- ER=8.5dB

Penalty from ER

- 2.3 dB penalty for 6 dB ER
- 4.5 dB penalty for 4.5 dB ER
- These are larger than values previously seen in PON because the US is signal-ASE limited, rather than Rx power limited
- Formula is described:

$$Q = \frac{I_1 - I_0}{\sigma_1 + \sigma_0} \propto \frac{P_1 - P_0}{\sqrt{P_1} + \sqrt{P_0}} \propto \sqrt{2P_{ave}} \frac{\sqrt{ER} - 1}{\sqrt{ER} + 1}$$

Penalty from ER 8.5 dB

Extinction Ratio [dB]

Upstream power levels

- High required ONT launch powers will drive up ONT costs
- For worst case, the power required (@8.5 dB ER) is very unrealistic
- For typical, it is possible but still higher than NG-PON2's requirements

Location	US/WL [dBm]	US total [dBm]
A	-17.5	
В	-12	0
С	-37	-25
D	-38	-26
E	3.1	

Location	DS/WL [dBm]	DS total [dBm]
A	-17.5	
В	-12	0
С	-37	-25
D	-38	-26
E	6.05	

Comfortable link budgets

Downstream

Upstream

Location	DS/WL [dBm]	DS total [dBm]
A	-1.5	
В	-7	11.05
С	13	25
D	12	24
E	-29.5 PR40	

Location	US/WL [dBm]	US total [dBm]
A	-17.5	
В	-12	0
С	-37	-25
D	-38	-26
E	1.7	

41.5 dB link budget

39.7 dB link budget

1.7 dB @ 8.5 dB ER gives equivalent performance to 4.0 dBm @ 6 dB ER.

This aligns the required ONT to that of NG-PON2

Loss of ODN Components

Loss budget		
	Loss Max	
Components	(dB)	Comment
50km Fiber	12	0.24 dB/km
λ Router	4.8	3.3 + 1.5
1x64	21.5	
splice/connector	1	2*0.2+6*0.1
Total	39.3	

- 2.2 dB margin in DS link budget
- 0.4 dB margin on US link budget
- Can achieve our objectives

Summary

- Using worst case values for all optical components results in a very large required link budget, making the optical components difficult/expensive
- Assuming worst case loss values, we can reduce the maximum link length or the power splitting ratio to close the budget in a reasonable way
- Other specifications suffer of similar issues and use a "better link"
 - \circ e.g., 10GBASE-ER
- The increased number of elements in Super-PON (WDM components) magnifies the worst case
- It is desirable to find a balance between worst case scenarios and reasonable specifications

Thank you