Super-PON Link Budget Analysis Revised Fiber loss

IEEE P802.3cs, July 2019
Liang Du, Google

Loss of ODN Components

Loss budget		
Components	Loss Max (dB)	Comment
50 km Fiber	12	$0.24 \mathrm{~dB} / \mathrm{km}$
λ Router	6.6	4 to 6.6
1×64	21.5	
splice/connector	1	arbitrary
Total	41.1	

- Worst case numbers are used for the splitters and the CAWG
- Typical numbers are used for the fiber and splice/connector
- Could assume the use of MZI-AWG for a loss of 3.3 dB
- Could add 1.5 dB to this to account for the initial lower volume optimization phase
- Total link budget of 39.3

Loss of ODN Components worst case

Loss budget L-band		
Components	Loss Max (dB)	Comment
50 km Fiber	17.5	$0.35 \mathrm{~dB} / \mathrm{km}$
λ Router	6.6	4 to 6.6
1×64	21.5	
splice/connector	2.2	$2^{*} 0.5+6^{*} 0.2$
Total	47.8	

Loss budget C-band		
Components	Loss Max (dB)	Comment
50 km Fiber	13.75	$0.275 \mathrm{~dB} / \mathrm{km}$
λ Router	6.6	4 to 6.6
1×64	21.5	
splice/connector	2.2	$2^{*} 0.5+6 * 0.2$
Total	44.05	

- Worst case numbers are used for the splitters, CAWG, fiber, and splices
- The increase in link length/complexity magnifies the margin left for components

Downstream power levels

- High output power of amplifier is a big problem for worst case - A class 4 laser will be needed - Likely to have many NL effects
- Using typical values still requires a challenging booster amplifier - Still a class 3 laser

Location	DS/WL [dBm]	DS total [dBm]
A	4.8	
B	-0.7	11.3
C	19.3	31.3
D	18.3	30.3
E	-29.5 PR40	

Performance: EML + pre-amp (10G)

Early samples shows we can achieve RX sensitivity -38dBm at $B E R=1 e-4$

- measured at the input of pre-amp
- $\mathrm{ER}=8.5 \mathrm{~dB}$

Penalty from ER

- 2.3 dB penalty for 6 dB ER
- 4.5 dB penalty for 4.5 dB ER
- These are larger than values previously seen in PON because the US is signal-ASE limited, rather than Rx power limited
- Formula is described:
$Q=\frac{I_{1}-I_{0}}{\sigma_{1}+\sigma_{0}} \propto \frac{P_{1}-P_{0}}{\sqrt{P_{1}}+\sqrt{P_{0}}} \propto \sqrt{2 P_{\text {ave }}} \frac{\sqrt{E R}-1}{\sqrt{E R+1}}$

Penalty from ER 8.5 dB

Upstream power levels

- High required ONT launch powers will drive up ONT costs
- For worst case, the power required (@8.5 dB ER) is very unrealistic
- For typical, it is possible but still higher than NG-PON2's requirements

Location	DS/WL [dBm]	DS total [dBm]
A	-17.5	
B	-12	0
C	-37	-25
D	-38	-26
E	6.05	

Comfortable link budgets

Downstream

Location	DS/WL [dBm]	DS total [dBm]
A	-1.5	
B	-7	11.05
C	13	25
D	12	24
E	-29.5 PR40	

41.5 dB link budget

Upstream

Location	US/WL [dBm]	US total [dBm]
A	-17.5	
B	-12	0
C	-37	-25
D	-38	-26
E	1.7	

39.7 dB link budget
1.7 dB @ 8.5 dB ER gives equivalent performance to 4.0 dBm @ 6 dB ER.

This aligns the required ONT to that of NG-PON2

Loss of ODN Components

DS: 41.5 dB link budget US: 39.7 dB link budget

Loss budget		
Components	Loss Max (dB)	Comment
50 km Fiber	12	$0.24 \mathrm{~dB} / \mathrm{km}$
λ Router	4.8	$3.3+1.5$
1×64	21.5	
splice/connector	1	$2^{*} 0.2+6^{*} 0.1$
Total	39.3	

- 2.2 dB margin in DS link budget
- 0.4 dB margin on US link budget
- Can achieve our objectives

Summary

- Using worst case values for all optical components results in a very large required link budget, making the optical components difficult/expensive
- Assuming worst case loss values, we can reduce the maximum link length or the power splitting ratio to close the budget in a reasonable way
- Other specifications suffer of similar issues and use a "better link"
- e.g., 10GBASE-ER
- The increased number of elements in Super-PON (WDM components) magnifies the worst case
- It is desirable to find a balance between worst case scenarios and reasonable specifications

Thank you

