OPTICAL POWER AND OSNR COMPARISON AND PROPOSAL FOR 100G OBJECTIVE

MATT SCHMITT, CABLELABS

JOHN DEANDREA, FINISAR

3/12/19 1

SUPPORTERS

- Brian Soloducha, Shaw
- Curtis Knittle, CableLabs
- Dave Lewis, Lumentum
- Eric Menu, Videotron
- George Hart, Rogers
- Ilya Lyubomirsky, Inphi

- Jeff Finkelstein, Cox
- Rich Baca, Microsoft

MEETING CABLE MSO REQUIREMENTS

- Cable MSO application was a key part of the Broad Market Potential for 100 GbE over 80 km objective
 - Therefore, ensuring this specification supports that application remains critical
- Motivation for multiple previous contributions including:
 - CableLabs PHYv1.0 spec (<u>http://www.ieee802.org/3/cn/public/19_01/P2PCO-SP-PHYv1.0-I01-180629.pdf</u>)
 - Baseline Proposal for 100G/80km Objective (<u>http://www.ieee802.org/3/cn/public/19_01/schmitt_3cn_01b_0119.pdf</u>)
 - Cable Operator Inputs for 100G+ Beyond 10k (<u>http://www.ieee802.org/3/B10K/public/18_05/schmitt_b10k_01a_0518.pdf</u>)

FOCUS ON OPTICAL POWER AND OSNR

• This presentation focuses on a key aspect of that:

- Optical Power and OSNR for the transmitter and receiver
- These parameters will determine the link budget or "reach" for a given system
 - Critical for determining if it will be useful for Cable MSO application
- This contribution identifies targets for MSO application, compares how various existing specifications compare to these targets, and proposes baseline for TF consideration in this area

3/12/19

CABLE MSO PLANT SURVEY DATA (PREVIOUSLY CONTRIBUTED:

- Surveyed optical link distances
 - <40km: 88%
 - <80km: 98%
- Number of optical channels
 - 1 channel: 50%
 - >1 channel (WDM): 50% (trending upwards)
- Optical amplifier location
 - When present, primarily in "hub" location only (amplifier only on one end of link)

RESULTING CABLELABS SPECIFICATION OBJECTIVES

- Reach of at least 40 km without optical amplification when deployed with 40channel DWDM mux/de-mux (figure on left, Case A)
- Reach of at least 80 km with optical amplification at hub site only when deployed with 40-channel DWDM mux/de-mux (figure on right, Case B)

OPTICAL POWER AND OSNR COMPARISON

- The following specifications defined these parameters for 100G
 DWDM using coherent optics:
 - ITU, <u>G.698.2</u> (11/2018)
 - CableLabs, <u>P2PCO-SP-PHYv1.0</u>
 - OpenROADM, <u>specification ver 3.0</u>
- This table compares those values
 - Note: CableLabs values adjusted for "End of Life" for equal comparison

	G.698.2	PHY∨1.0	OpenROADM
Minimum Tx Output Power	-8 dBm	-6.5 dBm	-5 dBm
Minimum Tx OSNR (193.6)	NA	35 dB	33 dB
Minimum Rx Input Power	-18 dBm	-30 dBm @35 dB OSNR	-22 dBm
Rx OSNR Tolerance (193.6)	19 dB	15.5 dB @-10 dBm Rx	17 dB

3/12/19 7

COMPARISON ITEMS OF NOTE

- Significant differences in receiver requirements
 - OSNR Tolerance and Minimum Input Power
- Likely related to two factors:
 - CableLabs requirements define
 "corners" for power and OSNR, and
 do not apply across entire range
 - G.698.2 and OpenROADM may include amplifiers at both ends of link

	G.698.2	PHYv1.0	OpenROADM
Minimum Tx Output Power	-8 dBm	-6.5 dBm	-5 dBm
Minimum Tx OSNR (193.6)	NA	35 dB	33 dB
Minimum Rx Input Power	-18 dBm	-30 dBm @35 dB OSNR	-22 dBm
Rx OSNR Tolerance (193.6)	19 dB	15.5 dB @-10 dBm Rx	17 dB

3/12/19 8

REACH CALCULATIONS

- The following slides estimates the "reach" that can be achieved for both Case A (Power Limited: DWDM, no amplifier) and Case B (OSNR Limited: DWDM, with amplifier)
 - Case A (power limited case) run for all three specifications
 - Case B (OSNR limited case) only run for CableLabs specifications thus far (based on available data), and show OSNR margin @ 80km under defined conditions

Some details to be aware of:

- A link impairment of 1.7 dB was assumed as a reasonable case (not worst case); no additional margin was included for Power Limited case
- Optical equipment includes two 40-channel muxes (5 dB each) and one distribution frame (1 dB)
- Numbers are all End of Life (EoL)
- Fiber loss of 0.25 dB/km was used to account for splices, etc.
- Case B assumes an amplifier that brings the Rx power up to the CableLabs spec defined value for receiver OSNR tolerance (-10 dBm)

CASE A: DWDM, NO OPTICAL AMPLIFIER (POWER LIMITED)

	G.698.2	PHYv1.0	OpenROADM
Minimum Tx Output Power (dBm)	-8	-6.5	-5
Link Impairments (dB)	1.7	1.7	1.7
Optical Equipment Loss (dB)	11	11	11
Rx Power w/Loss (dBm)	-20.7	-19.2	-17.7
Minimum Rx Input Power (dBm)	-18	-30	-22
Min Link Budget (dB)	NP	10.8	4.3
Reach (km)	NP	43.2	17.2

3/12/19 10

λ

CASE B: DWDM, WITH OPTICAL AMPLIFIER (OSNR LIMITED, UPSTREAM DIRECTION)

Results for "PHYv1.0" column from CableLabs <u>P2PCO-SP-ARCH-I02-190311</u> specification

	G.698.2	PHYv1.0	OpenROADM
Minimum Tx Output Power (dBm)	-8	-6.5	-5
Minimum Tx OSNR (dB)	NA	35	33
Rx OSNR Tolerance (dB)	19	15.5	17
Amplified Rx Power @ upstream receiver	TBD	-10	TBD
OSNR Impairments (dB)	1.7	1.7	1.7
Rx OSNR Tolerance w/Impairments (dB)	20.7	17.2	18.7
Reach (km)	TBD	80+	TBD
Calculated Rx OSNR @ 80km (dB)	TBD	19.3	TBD
Rx OSNR Margin (dB)	TBD	2.1	TBD

ρ

CONCLUSION

 The Cable MSO application is a significant piece of the broad market potential for the 100G objective of 802.3ct

- Ensuring that our solution for 100G addresses this application is important for maintaining that broad market potential
- Optical power and OSNR requirements are a key piece of this
 - Cable MSOs have some network requirements that differ slightly from some of the assumptions made by other specifications/standards and impact these requirements
 - As a result, optical power and OSNR requirements in those specifications may not support cable MSO application without modification

PROPOSALS

- Define separate OSNR and receive power requirements for amplified and unamplified scenarios as used in the CableLabs specifications, and as suggested in <u>http://www.ieee802.org/3/ct/public/19_03/stassar_3ct_01_0319.pdf</u>
- 2. Adopt values that ensure we can meet our 80km objective for 100G with amplifiers at only one end of the link
- 3. Adopt reasonable values for unamplified links without creating a new objective or separate PMD based on device capabilities
- 4. Consider the values in the CableLabs specification as a starting point for these values, with modifications based on TF feedback as needed

