Impact of channel count of PMD Clause 154 on black link design and volume manufacturing

> Presenter: John DeAndrea Affiliation: Finisar Corporation Employer: Finisar Corporation

Supporters:

- Rich Baca, Microsoft
- Mark Filer, Microsoft
- David Lewis, Lumentum

References in this Contribution

- "Black Link Channel edge impairments and channel plan impacts for WDM Links" http://www.ieee802.org/3/cn/public/18 11/deandrea 3cn 01c 1118.pdf
- Baseline considerations for 100G and 400G DWDM objectives" http://grouper.ieee.org/groups//802/3/ct/public/19 03/stassar 3ct 01 0319.pdf
- "802.3ct wavelength grid considerations" <u>http://www.ieee802.org/3/ct/public/19_07/deandrea_3ct_01_0719.pdf</u>

Contribution Investigation:

- Impact of channel count on EDFA power and design
- Optical Mux and DeMux manufacturing and impact
- Recommendation on PMD Channel count and start/stop frequency

Black Link Model

- Main components
 - Optical Amplifier, Booster and Pre Amplifier
 - Passive Add/Drop (Mux and DeMux) Optical Filter

EDFA Components

- Optical Isolators
 - PDL, to 0.2 db
 - WDL (flatness across band) to +/-0.2
- Optical Taps
 - PDL to 0.1 db
 - WDL to +/-0.2
- Pump Add Filter, 980/1550
 - PDL to 0.1 db
 - WDL to +/-0.1
- Erbium Fiber
 - Gain Medium, OSNR
 - Noise Figure
- Gain flattening filter
 - PDL to 0.1db
 - WDL (flatness across band) to +/-0.1

9/10/2019

EDFA Pump power Influence from channel count

• Assume EDFA design per channel power of +2 dbm:

Channel Count	PmW	P dBm	Pump Power@+2 dbm/ch
48	76.08	18.81	360
49	77.66	18.90	360.4
50	79.25	18.99	360.8

- Little impact on EDFA cost due to pump power increase

9/10/2019

IEEE P802.3ct Task Force, Indianapolis, September 2019

Passive Add and Drop Filters (Mux and DeMux)

- Passive AWG filters are monolithic chips and fabricated to cover very wide frequency ranges
- They are typically fabricated as wide as possible for channel count to cover as many market applications as possible
- Coupling to these chips is typically V-groove silicon benches
- The V-grooves are built with ribbon fibers vailable from multiple high volume manufacturers of glass fibers
- Ribbon fibers have standardized to 8 and 12 channel counts and have been deployed in large mass volume, see Verizon, 2017 of 17 million fiber-km:

"Verizon to buy \$300 million of fiber-optic cable from Prysmian,

https://www.lightwaveonline.com/fttx/cables-enclosures/article/16674010/verizon-to-buy-300-million-offiberoptic-cable-from-prysmian

Fiber Ribbon Assemblies

- Main components
 - Fiber Ribbon
 - Silicon V-Groove
 - Epoxy Attach

AWG Mux and DeMux Coupling

- AWG Chip:
 - Channels designed with 250 micron spacing
 - Fiber Ribbon spacing aligned with chip in blocks of 12
 - Epoxy attach for 48 channels, 4 x12 ribbon assemblies

Summary and Recommendation

- There relatively little impact of channel count on EDFA design when comparing 48, 49 or 50 channels
- There <u>is an impact</u> in going from 48 to 49 or 50 channels due to volume production with ribbon fibers in the AWG coupling
- Recommend IEEE P802.3ct committee adopt <u>48</u> channels as the channel count for PMD Clause 148, 100GBASE-ZR
- Recommend IEEE P802.3ct committee adopt OIF 48 channel range:
 - Start Frequency: <u>191.4 THz</u>
 - Stop Frequency: <u>196.1 THz</u>