75GHz-spaced MUX/DMUX Test Results Based on 3-Channel 400GBase-ZR Signals

Yi Weng, Konstantin Kuzmin, and Winston Way

NeoPhotonics

IEEE802.3bt November 2019

Supporters

- Mark Filer, Microsoft
- Rich Baca, Microsoft
- Tad Hofmeister, Google
- Liang Du, Google
- Mattia Cantono, Google
- Gary Nicholl, Cisco
- Tom Williams, Acacia
- Atul Srivastava, NTT Electronics

Motivation of 75GHz Channel-Spacing for 400GBase-ZR Signals

- DCI demand is clear, see du_3ct_01b_0919
- Single-carrier 400Gb/s signal has been transported over 75GHzspaced systems for a few years, but pulse shaping is typically applied to a line-card.
- 400GBase-ZR will be used in a small form factor pluggable, and pulse shaping needs to be avoided to save power consumption.
- The DWDM mux/dmux design should accommodate the 75GHzspaced 400GBase-ZR signal with no pulse shaping with a minimum OSNR penalty.

Presentation Highlights

• Experiment and Simulation

- Test signal: 3 neighbor 75GHz-spaced channels of 60 Gbaud/DP-16QAM without pulse shaping
- Coherent modulators: One with a 3dB BW of 30GHz and the other 40GHz to cover a wide range of possible signal bandwidths, both exhibit <23dB OSNR at CFEC pre-FEC threshold for BtB

• 75GHz-spaced 64-ch <u>athermal</u> MUX/DMUX

• Test condition:

- Worst-case laser frequency drift directions and up to 1.8GHz off-center (experiment)
- Worst-case MUX frequency drift (simulation)
 - Dater Center: ±2 GHz (15 ~ 40°C)
 - Telecom: ±5 GHz (-5 ~ 65°C)

Experimental and Simulation MUX/DMUX Filter Shapes (Typical)

Experiment and Simulation Conditions

Experimental Condition (MUX + DMUX1, used typical specs)

- Middle channel shifted 1.8GHz toward right
- Right channel shifted 1.8GHz toward left
- Left channel shifted 1.8GHz toward right

Use an optical spectrum analyzer with a resolution of 125MHz to ensure the precise frequencies of the 3 channels

Simulation Condition (MUX + DMUX2, used worst specs)

- Add ± 2 GHz drift to the MUX filters
 - (±2 GHz wavelength accuracy under 15 ~ 40°C DCI ambient temperature)
- Add ± 5 GHz drift to the MUX filters

(±5 GHz wavelength accuracy under -5 ~ 65°C telecom ambient temperature)

Experimental Setup

60Gbaud/DP-16QAM Test Signals

- TX_w signal (wider transmitted signal)
 - DAC 3dB BW=24GHz, driver+modulator 3dB BW= 40GHz
 - Optical signal 3dB bandwidth after 7-tap pre-equalization= 68GHz
 - Frequency excursion (including laser frequency of ±1.8GHz) would be 35.8GHz, exceeding the typically defined 32GHz limit
- TX_n signal (narrower transmitted signal)
 - DAC 3dB BW= 24GHz, driver+modulator 3dB bandwidth= 30GHz
 - Optical signal 3dB bandwidth after 7-tap pre-equalization= 42GHz
 - Frequency excursion (including laser frequency of ±1.8GHz) would be 22.8GHz, within the typically defined 32GHz limit

Optical Spectra After MUX without and with laser frequency shifting

Optical Spectrum

dBm

-20

-30

No Laser Frequency Shift

3 Lasers'

Frequency

Shifts (+1.8,

dBm

-20

-30

Optical Spectrum

The dip level clearly shows that (a) TW_n signals have less inter-channel Xtalk than TW_w ; and (b) Xtalk increases after 3 laser frequency shifts

Summary of Experimental Results (MUX+ DMUX1, used typical specs)

Worst-case (with laser drifts) OSNR penalty (dB) @ 1.25e-2

	TXn with 3dB optical BW of
	42 GHz after 7-tap pre-
	equalization
Simulation	0.33
Experiment	0.39

Summary of Simulation Results (MUX+DMUX2, used worst specs)

Laser frequency drifts	(+1.8, +1.8,	-1.8GHz)
------------------------	--------------	----------

۶r	OSNR penalty (dB) @ BER = 1.25e-2	MUX + DMUX2
rature		
	TXn -2GHz Mux offset	0.44
	TXn +2GHz Mux offset	0.41

Data Center Ambient Temperature

e	OSNR penalty (dB) @ BER = 1.25e-2	MUX + DMUX2
Э		
	TXn -5GHz Mux offset	0.58
	TXn +5GHz Mux offset	0.54

Telecom Central Office Ambient Temperature

Conclusions

- Typical 400ZR transceivers should have driver+modulator 3dB bandwidth around 28-33GHz (before pre-equalized), similar to that of TXn in our experiment. Therefore, under the worst-case condition, the OSNR penalty due to new 75GHzspaced MUX/DMUX should be <0.5dB for data center ambient temperature.
- The OSNR penalty should be <0.6dB for telecom ambient temperature.
- 75GHz frequency plan: 193.1 + 3*n* × 0.025 (THz) where 3*n* = 120 to -69.

Thank You!