Moving Forward with the IEEE P802.3ct Project

John D'Ambrosia, Chair, IEEE P802.3ct Task Force Futurewei, US Subsidiary of Huawei Joint IEEE P802.3cn / IEEE P802.3ct Task Force Interim Teleconference Meeting, June 6, 2019

> Joint IEEE P802.3cn / IEEE P802.3ct Task Force Interim Teleconference Meeting, June 6, 2019

Introduction

• This presentation reviews status of IEEE P802.3ct project and associated needed baselines, and discusses path forward

The Role of the Chair

Per the IEEE 802.3 Ethernet WG Operations Manual (http://www.ieee802.org/3/rules/P802_3_rules.pdf)

- The operation of the TF has to be balanced between democratic procedures that reflect the desires of the TF members and the TF Chair's responsibility to produce a draft standard, recommended practice, or guideline in a reasonable amount of time for review and approval by the WG. Robert's Rules of Order shall be used in combination with these operating rules to achieve this balance.
- The full responsibilities of the chair are specified in 3.4.3 Task Force Chair's Responsibilities.
- Reminder individual standards activities within the WG are, at the discretion of the WG, carried out by Task Forces (TF) operating under, and reporting to, the WG.

IEEE P802.3ct Adopted Timeline

Status - High Level Decisions

	100GbE	400 GbE
Channel Model	stassar_3ct_01a_0519.pdf	stassar_3ct_01a_0519.pdf zhang_3ct_01a_0519.pdf
# of Channels	?	?
Channel Spacing	100 GHz	100 GHz
Modulation Format	DP-DQPSK DP-16QAM	
Frame Assumption	Same as OTN uses for 100G-DP- DQPSK400GBASE-ZR PCS/PMA	
FEC	Staircase (ITU-T G.709.2)	CFEC
Tx Metric	stassar_3ct_01a_0519.pdf	stassar_3ct_01a_0519.pdf zhang_3ct_01a_0519.pdf
AUI Attachment	Inverse RS-FEC Sublayer	400G XS

Other Input (1/2)

- Per zhang_3ct_01a_0519.pdf
 - Point 1 "We propose to keep as intact as possible the OIF 400ZR Rx specs (lyubomirsky_3ct_01a_0319.pdf) which captures measurable individual impairment tolerance spec [as opposed to the minimum OSNR spec in stassar_3ct_01_0319.pdf]"
 - Point 2 "We therefore propose the 400GBASE-ZR line system operators comply to the black link table, and the transceiver suppliers comply to the Tx and Rx spec tables."

Other Input (2/2)

- May 2019 .3ct Strawpolls
 - Straw poll #1
 - I support using a common optical specification methodology for 100 Gb/s and 400 Gb/s in P802.3ct:
 - <u>Results</u> Y: 25 N: 0 Need more information: 3
 - Straw poll #2
 - As the basis of the 100GBASE-ZR and 400GBASE-ZR optical spec baselines I support:
 - A) the tables and listed parameters on slides 5 –7 from stassar_3ct_01a_0519
 - B) individual measurable Rx impairment compliance as per zhang_3ct_01_0519
 - <u>**Results</u>** A:8 B:9 Need more information: 10</u>

RE: Points Raised in zhang_3ct_01a_0519.pdf

- <u>Point #1 –</u>
 - Different SDO's and organizations have different procedures to their standards / specifications
 - IEEE 802 IEEE-SA standards-based (subsequent submission to ISO/IEC JTC1 SC6)
 - ITU-T recommendations
 - CableLabs defines device interface specifications (subsequent submission to SCTE for adoption as an ANSI standard)
 - OIF "Implementation Agreements" based (may be leveraged by other standards organizations)
 - These groups may have different technical approaches to writing their specifications
- Point #2 Compliance or Conformance?
 - Consider market conditions today
 - Reviewing PAR 5.2.b Scope "Define
 - physical layer specifications and management parameters for the transfer of Ethernet format frames at 100 Gb/s and 400 Gb/s at reaches greater than 10 km over DWDM systems."
 - Writing conformance specifications not in scope
 - 7.4 Does the sponsor foresee a longer term need for testing and/or certification services to assure conformity to the standard?:

Additionally, is it anticipated that testing methodologies will be specified in the standard to assure consistency in evaluating conformance to the criteria specified in the standard?

- P802.3ct Response No (all IEEE 802.3 projects currently underway No)
- Historical review with our WG Chair "So in summary it looks like this only got as far as AUI cable and the 10BASE-T MAU, no technical work was performed on the standards after 1993, and they were withdrawn in 2007."
- Only Ethernet certification testing I am aware of is Ethernet Alliance PoE Certification Program, which uses its own test specification

Status – Relevant Industry Specifications

- 100 Gb/s
 - 1. CableLabs P2P Coherent Optics Physical Layer 1.0 Specification
 - Released June 29, 2018 (<u>http://bit.ly/31fiaTt</u>)
 - Dec 19, 2018 (<u>http://bit.ly/2MwZjjd</u>)
 - First 100G P2P Coherent Optics Interop
 - Participants included 9 manufacturers from coherent optics space, including both silicon and module/system makers (each brought a module)
 - Jan 2019 Interim submitted to IEEE 802.3cn Project (<u>http://www.ieee802.org/3/cn/public/19_01/index.html</u>)
 - 2. ITU-T G.698.2 Consented version shared with IEEE 802.3 Nov 2018
 - Published 11 Feb 2019, available on ITU-T webpage (<u>https://www.itu.int/rec/T-REC-G.698.2-201811-I/en</u>)
- 400 Gb/s
 - 1. OIF 400ZR
 - oif2019.161.03 forwarded to IEEE P802.3ct May 2019 Interim
 - Per liaison (<u>http://www.ieee802.org/3/minutes/may19/incoming/OIF_to_IEEE_802.3_400ZR_May_2019.pdf</u>)
 - EVM specifications, currently in an informative annex
 - Verification of test algorithms and pass criteria will require actual silicon to complete
 - EVM specifications intended for future integration to normative sections of IA.
 - Target date for completion?

My Optical Baseline Proposal Perspective

- 1 standard and 1 specification released
- Consensus baseline presentation from participants from both organizations
- Alignment with "traditional" IEEE optical specification approach

- 1 specification in development
- 2 competing baseline proposals
 - zhang_3ct_01a_0519 expressed desire to maintain alignment with OIF approach
 - Not aligned with "traditional" IEEE optical specification approach
 - stassar_3ct_01a_0519.pdf

Regarding May Strawpolls

- Development of a common optical specification methodology for 100 Gb/s and 400 Gb/s in P802.3ct makes sense – but is it practical from a time perspective?
 - 100 Gb/s standards are done and in industry
 - 400ZR in development validation of EVM awaiting real silicon, time frame?
- Additional debate on approach of specification methodology anticipated – more time
 - zhang_3ct_01a_0519.pdf
 - Not aligned with traditional IEEE optical specification methodology
 - Will "measurable individual impairment tolerance specs" lead to restrictive specifications, false negatives, and result in higher cost?

Summary

- We are now behind schedule
 - 100G optical standard / specification look further ahead in terms of industry development
 - Any changes to current approaches could impact cost / deployment
 - Baseline aligned with traditional IEEE approach
 - 400G specification
 - 400G industry work in process
 - Competing baseline proposals
 - stassar_3ct_01a_0519.pdf aligned with traditional approach
 - zhang_3ct_01a_0519.pdf not aligned with traditional approach
 - Time needed for resolution of specification approach
- Should the 100G and 400G objectives be split into different projects due to different timelines?

Summary 2

- # of channels still needs resolved
 - Is there a difference between the required number of channels for 100GbE and 400GbE application spaces?
 - What is cost impact of supporting ≈ all 48 channels or some subset?
- How will the specification be written so that users know which parts interoperate?
 - Potential for additional baselines dependent on decision here

Backup

of Channels

	Start Channel	End Channel	Y / N / Need more info / Abstain
Mar Strawpoll #1	191.3 THz	196.1 THz	12 / 1 / 17 / 5
Mar Strawpoll #2	191.5 THz	196.1 THz	11/0/10/9

individuals who needed more information on Strawpoll #1 were asked for input on what they were looking for -

- What are cost factors for deploying around end frequencies?
- This is new territory for Ethernet, and some basis for the Task Force decision should be provided.
- Per TF 4/4 Ad hoc Conversation what is the application need?

Specification for Device Interoperability

- Traditionally, a PHY name in Ethernet has defined the characteristics, including the wavelength.
 - <u>100GBASE-ZR</u> -100 Gb/s operation on a single wavelength capable of at least 80 km over a DWDM system
 - <u>400GBASE-ZR</u> -400 Gb/s operation on a single wavelength capable of at least 80 km over a DWDM system
- For DWDM links these are the three key characteristics that need to match:
 - Transmit Frequency
 - Rx Oscillator Frequency
 - Ports on Mux (i.e. link wavelength)
- How will the specification be written so that users know which parts interoperate?
 - 48 PHY names is possible, but ugly!
 - For example, the ITU-T has an application code (similar to an Ethernet PHY name) and a frequency (transmit and Rx Oscillator Frequency) which also indicates the link wavelength
 - We need to resolve before ending Task Force Review

Thanks to Pete Anslow