SOURCE PHOTONICS

Reassement of FR4/LR4-6 Reach Specs, Are We on the Right Track?

Frank Chang; Source Photonics Yu Xu, Xinyuan Wang; Huawei

P802.3cu 100 Gb/s and 400 Gb/s over SMF at 100 Gb/s per Wavelength Task Force

31 March 2020

400G-FR4/LR4-6 Overview

FR4/LR4-6 status

- Current 400G-FR4 & LR4-6 appear in QSFP-DD market
- Supports 2km & 6km reach applications
 - 4 wavelengths CWDM EML and PIN
 - 400GAUI-8 electrical interface
 - QSFP-DD type 2 housing
 - Typically non-hermetic COB technology

Is it viable to extend for 400G-LR4 at 10km?

- For uncooled CWDM grid preferred by users at 53GBd PAM4, the debate of chromatic dispersion penalties represent a significant issue for reaches of 10 km
- ► The market seems to require full 10km interoperable solutions with margin.
- This presentation look into real field transceivers, and explore the possibility for extension to 10km.

400G LR4-6 TX TDECQ Performance (SSPRQ)

L0=1273.88nm TECQ=1.52dB without fiber Left: Unqualized TDECQ=1.18dB with 6km fiber L2=1309.34nm L1=1291.69nm TECQ=1.64dB without fiber TDECQ=1.35dB with 6km fiber L1=1291.69nm TECQ=1.64dB without fiber TDECQ=1.35dB with 6km fiber L1=1291.69nm TECQ=1.64dB without fiber TDECQ=1.35dB with 6km fiber L1=1291.69nm TECQ=1.64dB without fiber L1=1291.69nm TECQ=1.35dB with 6km fiber L1=1291.69nm TECQ=1.35dB with 6km fiber L2=1309.34nm

TDECQ=2.32dB with 6km fiber

TDECQ=2.63dB with 6km fiber

400G LR4-6 Rx OMA Performance

400G LR4-10 TDECQ Results

L0=1273.88nm

TDECQ=1.23dB (negative dispersion)

(Note: TECQ=1.52dB)

L2=1309.34nm

TDECQ=2.07dB (~ zero dispersion)

(Note: TECQ=1.86dB)

L1=1291.69nm

TDECQ=0.87dB (negative dispersion)

(note: TECQ=1.64dB)

L3=1333.58nm TDECQ=4.34dB (positive dispersion)

(Note: TECQ=1.77dB)

L3 fails TDECQ specs of <3.9dB for 10km due to positive dispersion!

400G LR4 10km Challenges

Key consideration for challenges

- 400G LR4 6/10km has worst case CWDM dispersion window from -35.6/-59.4 to +20.1/33.4ps/nm.
- EMLs typically show positive chirp by nature, so L3 run into largest CD penalty.
 - SiPho MZ implmentation is normally close to zero chirp, so L0 could show worst case CD penalty.

400G LR4 10km Challenges

- ► IEEE P802.3cu specifications look right for 6km reach.
 - There could exist interop challenge for 10km.
 - Primarily problem due to weaker Rx equalizer of 5 FFE taps

Dispersion	TDECQ	TECQ	TDECQ-TECQ	10*log10(Ceq)	TDECQ-10*log10(Ceq)			
Corning 10km (CD ~ 25.7ps/nm)	3.5dB	1.77	1.73dB	0.28	3.22			
Corning 10.5km (CD ~ 28.0ps/nm)	4.34	1.77	2.57	0.48	3.86			
Corning 10.6km (CD ~ 28.3ps/nm)	4.31	1.77	2.54	0.5	3.81			
OFS 12.3km (CD~25.2ps/nm)	3.64	1.77	1.87	0.37	3.27			

L3 CD penalty across various ~10km fibers

- ► Practically 10km link can be closed using real chip implementation of ≥10 FFE taps. Actual BER test results normally show smaller CD penalty, e.g.
 - CIG (<u>lewis cu adhoc 041719</u>) with 0.85dB for L3 +chip EML
 - Intel (<u>schube_3cu_01_0519</u>) with L0 0.7dB for L0 chirp SiPho

Recap 400G LR4 10km Results so far

- As reviewed in <u>anslow 3cu 02a 0519</u>, the TDECQ-TECQ is more than 2.5dB for 10km transmission with CWDM grid.
- Dispersion penalty can be too large to support 10km over CWDM wavelength.
- In Draft 2.0 of 400GBASE-LR4-6, the |TDECQ-TECQ| penalty is defined within 2.5dB for 6km.

	Description	400GBASE-FR4	400GBASE-LR4-6	Unit
	Signaling rate, each lane (range)	$53.125\pm100~ppm$		GBd
	Modulation format	PAM4		—
ed	Lane wavelengths (range)	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5		nm
	Side-mode suppression ratio (SMSR), (min)	30		dB
	Total average launch power (max)	9.5	11.6	dBm
	Average launch power, each lane (max)	3.5	5.6	dBm
	Average launch power, each lane ^a (min)	-3.3	-2.8	$_{ m dBm}$
n)	Outer Optical Modulation Amplitude (OMA _{outer}), each lane (max)	3.7	4.4	dBm
	Outer Optical Modulation Amplitude (OMA_{outer}), each lane $(\min)^{\rm b}$	-0.3	0.2	dBm
	Difference in launch power between any two lanes (OMA_{outer}) (max)	4	4	dB
	Launch power in OMAouter minus TDECQ, each lane (min): for extinction ratio ≥ 4.5 dB for extinction ratio < 4.5 dB	-1.7 -1.6	-1.2 -1.1	dBm dBm
	Transmitter and dispersion eye closure for PAM4 (TDECQ), each lane (max)	3.4	3.5	dB
	Transmitter eye closure for PAM4 (TECQ), each lane (max)	3.4	3.5	dB
\langle	TDECQ – TECQ (max)	2.5	2.5	dB

Table 151–7—400GBASE-FR4 and 400GBASE-LR4-6 transmit characteristics

Explore 400G LR4 10km options by 802.3?

- LR4 10km can be practically viable with following improvements:
 - Chirp managed EMLs (johnson_optx_01_0319)
 - Excessive CD penalties for L0 at cold (-chirp) or L3 at hot (+chirp)
 - Could be feasible in principle for future, but non-exist today
 - Increase the Ref Rx taps beyond >5 taps (<u>chang_3cd_01a_0917</u>; <u>tamura_01a_1017_smf</u>; <u>way_3bs_01a_0717</u>);
 - Is it still possible to happen after long debate in the past?
 - Adopt new low dispersion fibers by <u>Lewis ITU talk</u>.
 - ► Tighten the worst case G.652 dispersion range.
 - Mitigate dispersion with bottom compression for Sipho Tx (welch_3cu_01_0719; mazzini_3cu_adhoc_082119)
 - Chromatic dispersion tends to impact PAM4 levels with upper eye(s) seeing most of the penalty, so forced bottom compression to alleviate.
 - ► Hard to interop with EML based Tx.
 - Stronger DSP algorithm like <u>MLSE method</u>
 - No taps change but use nonlinear equalization for extra 2-3dB.

What can we do for 400G LR4 at 10km?

- Suggestion to adopt subset of G.652 for use in the O-Band
 - Actual real fibers has lambda 0 [1305,1315nm]

CWDM Dispersion range for worst-case G.652 fiber (refer to Lewis ITU talk)

Summary and Comments

- Test data from existing FR4/LR4-6 modules shows IEEE P802.3cu specifications look right for defining 6km reach.
 - 6km can be fully interoperable for multi-vendors at worst-case G652 fiber deployments.
 - 10km might show marginal under real field fibers.
- There exist strong demand for LR4 at "real" 10km and can be practically viable using existing DSP IC implementation.
- Suggest add 10km option on the condition of following, e.g.
 - Increase the Ref Rx taps beyond >5 taps.
 - Adopt low dispersion fibers
- Hyperscale application is not likely necessary to require operation with deployed legacy fiber
 - Recommend to specify new low dispersion fiber for deploying 10km.

THANK YOU!

