Evaluation of different Shielded Differential Pair (SDP) raw cables AWG26

Contribution to IEEE 802.3cy

Erwin Köppendörfer and Dominik Dorner LEONI October 2020 Supporter

Evaluation overview

- > Comparison of three AWG26 (0,14mm²) shielded differential pair (SDP) concepts with operating temperature $T = 105^{\circ}C$ and a differential impedance of $100\Omega \pm 5\Omega$
 - > SDP1: Designed for frequency range up to 5,5 GHz
 - > SDP2: Designed for frequency range up to 6,5 GHz
 - > SDP3: Designed for frequency range up to 9 GHz
- > Investigation on different temperature conditions and ageing behavior
 - > Temperatures $R_T = 23^{\circ}C$, $T_u = -40^{\circ}C$, $T_o = 105^{\circ}C$
 - > Short term ageing (STA) 240 $h@130^{\circ}C$ and measurement at $R_T = 23^{\circ}C$
 - > Sample ends ~10cm outside of the oven
- > Measurement setup
 - > Cable length 10m
 - > $f_{start} = 300 \ kHz$, $f_{stop} = 10 \ GHz$, linear sweep
 - Measurement fixture losses not eliminated (<0,1dB@7GHz)</p>

RF results including temperature drift

SDP1 concept

 Even if the dip doesn't occur for some conditions, the dip-free frequency range can be ensured only up to 5,5 GHz for all conditions

RF results aging behavior

SDP1 concept

- The insertion loss increases after short term aging approx.
- Even if the dip doesn't occur for some conditions, the dip-free frequency range for concept SDP1 can be ensured only up to 5,5GHz for all conditions!

RF results including temperature and aging behavior

Comparison SDP1 concept vs. SDP2 concept

> The frequency range of the SDP2 concept is currently limited by the dip @ ~6,7 GHz

> The temperature and aging behavior of SDP2 is much better than SDP1

RF results including temperature and aging behavior

Comparison SDP1 concept vs. SDP2 concept vs. SDP3 concept

Insertion Loss Budget vs. length calculation

Comparison SDP1 concept vs. SDP2 concept vs. SDP3 concept

- The suggested IL limit of sedarat_3cy_01_10_14_20.pdf is 24dB@Nyquist to limit the PHY complexity
- The expected Nyquist frequency is 7GHz acc. Kadry_3cy_02_0820.pdf
- Expected budget for MDI, PCB and connector is 4dB@7GHz
- The IL budget for the cable only (without any connector) is 20dB@7GHz!
- The length for the whole channel should be limited to approximately 7m to achieve the IL budget target acc. sedarat_3cy_01_10_14_20!

Conclusion

- Different cable concepts allow different bandwidths
- > Concept of SDP2 could be extended to a maximum frequency of about 7GHz if required
- Concept of SDP2 can fulfill proposal Kadry_3cy_02_0820.pdf up to 7GHz
- Concept of SDP3 fulfills bandwidth and IL requirement for limit proposal Kadry_3cy_02_0820.pdf even after STA
- Concept SDP2 and SDP3 also fulfill the requirements regarding the microreflections described in jonsson_3cy_01a_10_14_20(1).pdf
- Common SDP concepts (SDP2 and SDP3) have a Insertion Loss of 3,0dB/m @ 7GHz (cable only; with temperature and aging)
- If a stronger IL limit is required, the maximum length of the link segment should be limited.

