Parameters for PHY analyses*

George Zimmerman CME Consulting, Inc / Marvell

* Items with strikeout and/or yellow highlight were striken, added, or modified during discussion on 10 Aug ad hoc

Purpose

 To start discussion to see where we have consensus and set some parameters for PHY discussion

Not the Purpose

 To push any particular phy proposal or metric for phy choice

Easy stuff we may have agreement on

- Baseband PAM transmission
- Zero-order transmit hold
 - Possibly plus a simple 1st or 2nd order lowpass filter at Nyquist?
- DFE-based reception
 - Using Salz analysis as a starting pt for margin in noise
- Containing error propagation
- Use of FEC to correct impulsive error events
- Primary EMI protection is cabling/shielding
 - Next (secondary) is separation of PAM levels at Rx

Some stuff we may assume but haven't necessary talked about in a while

- We may have agreement on the following, but if we don't, now is a good time to identify:
 - Continuous transmission at full rate
 - e.g., echo cancelled or unidirectional
 - Simple clock rates
 - In .3ch this drove 12.5% overhead for FEC + framing
 - Use of precoder similar to .3ch
 - Impulse environment similar to .3ch
 - Means managing impulses of lengths to 60ns is a 'must' (see, e.g., Pandey 3ch 02 1118.pdf
 - Based on 50 ns external noise + 10ns random noise & error propagation
 - » Impulse length could become 50ns + 4ns...
 - 60ns means correction of 1500 BT at 25 Gbps, or interleave depth of 10 on the 802.3ch RS code
 - Use of programmable interleaving to cover both low latency and long impulse cases
 - Definition of the transmit level at the MDI or at TP0? (for evaluation purposes)

Some things unspoken or that have been different

- We may be able to get consensus on these, and it would simplify comparison, but to date we
 either haven't said or haven't been consistent
- Transmit levels:
 - Similar to 802.3ch, e.g., -1 to 2dBm, 1.3Vpp, but WHICH is the limit? Vpp or dBm? (suggest Vpp)
- Line coding:
 - Simple mapping between modulation and FEC-encoded bits
- FEC-strategy:
 - RS, or similar multi-bit symbol-based block codes (802.3ch uses 10bit RS)
 - Do we go to larger or smaller GF, changing complexity?
 - Do we go with a different coding strategy altogether?
 - FEC symbols contain an integer number of baud intervals
 - FEC overhead? (same as CH?)
- Evaluate echo cancellation assuming micro-reflection (sparse EC) architecture
 - May need to be generalized, and not assume specific implementation

Implementation-related stuff folks will differ on

- These I don't expect us to get consensus on, because they vary with architecture, baud, and PAM levels
 - Finite-length MMSE-DFE based analysis
 - Finite-wordlength complexity analysis of DSP
 - Proprietary receiver-based EMI protection
 - Gate count complexity tradeoffs

Discussion

- What did I miss?
- What can we generally agree on?

THANK YOU!