

EEE LPI Signaling

Contribution to IEEE 802.3cy

Ragnar Jonsson*, George Zimmerman**, Peter Wu* and Alireza Razavi Majomard* *Marvell and **CME Consulting June 7, 2022

Introduction

Previous contributions

jonsson majomard 3cy 01 05 03 22 jonsson zimmerman majomard 3cy 01a 05 17 22, and jonsson etal 3cy 01b 05 24 22 Suggested changes to the excising EEE text to help clarify the transition to quiet mode

 This presentation proposes specific changes to the LPI Signaling text

Proposed Text Changes

Change the text in 165.3.6.2 to

During the quiet period the PCS transmitter shall pass zeros to the PMA via the PMA_UNITDATA.request primitive. The receiver should ignore transmissions during first 150 ns following the transition to the quiet period and ignore other transmissions outside of the specified refresh and ALERT intervals.

Change the text in 165.4.3.1 to

The symbols to be transmitted by the PMA are denoted by tx_symb. PMA Transmit generates a pulse-amplitude modulated signal on each pair in the following form:

$$s(t) = \sum_{n=0}^{\infty} a_n h_T(t - nT)$$
 (165 - 12)

In Equation (165–12), a_n is the PAM modulation to be transmitted at time nT, and $h_{\tau}(t)$ denotes the system symbol response at the MDI. This symbol response shall comply with the electrical specifications given in 165.5.6.(165–12).

When the tx_mode is SEND_N, tx_symb represents the PCS-encoded 25GMII data stream, a_n is the PAM4 modulation symbol from the set {-1, -1/3, +1/3, +1}.

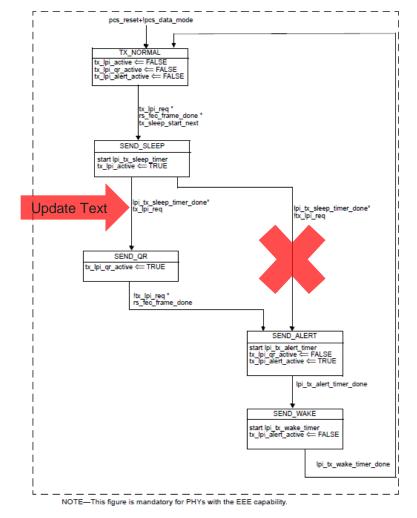
During training or quiet-refresh signalling, tx_mode is SEND_Z or SEND_T. During training or quiet-refresh signalling, PMA Transmit the value of a_n is a PAM modulation symbol {+1, 0, -1}.

NOTE – during the first 150 ns following a transition to quiet-refresh signalling, the output of the transmitter may be ignored by the receiver.

Change the text in 165.3.6.1

EEE-capable PHYs shall synchronize refresh intervals during the LPI mode. A PHY in SLAVE mode is responsible for synchronizing its partial PHY frame count (PFC24) to the MASTER's PFC24 during PAM2 training. For the requirements on the SLAVE and the MASTER frame alignment, see 165.4.2.4.10.

Refresh signaling is derived by tracking the RS-FEC frame count as shown in Figure 165–13, where:


RS-FEC frame count = floor (PFC24 / 4) mod 96.

Following the transition to PAM4, the PCS continues with the RS-FEC frame count and uses the count to generate refresh, alert, and wake control signals for the transmit functions.

Alert, a four RS-FEC frame long sequence (alert_length), shall start four frames after at the beginning of any eighth PHY frame boundary counting from the start of the QR cycle. The MASTER and SLAVE shall derive the tx_refresh_active and tx_alert_start_next signals from the transmitted PHY frames as shown in Table 165–5 and Table 165–6. When Slow Wake is active, alert can be transmitted in only a single QR cycle location, stating at frame 92.

Change in 165.3.7.3

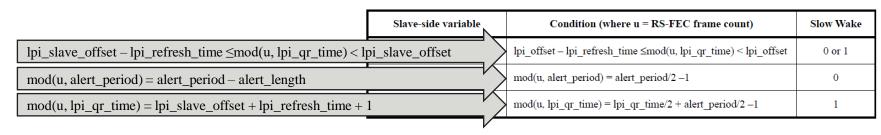

- Update figure 165-20 to eliminate transition from SEND_SLEEP to SEND_ALERT
- In the path from SEND_SLEEP to SEND_QR, change "lpi_tx_sleep_timer_done*tx_lpi_req" to "lpi_tx_sleep_timer_done"

Table 165–4—LPI timing parameters

	Parameter	Number of RS-FEC frame periods
	alert_length	4
Ν	alert_period	8
lpi_slave_offset 42	lpi_offset	52
lpi_master_offset 90 Add Row	lpi_qr_time	96
r	lpi_quiet_time	95
	lpi_refresh_time	1

Table 165–5—Synchronization logic derived from slave signal RS-FEC frame count

Table 165–6—Synchronization logic derived from master signal RS-FEC frame count

	Master-side variable	Condition (where v = RS-FEC frame	count) Slow Wake
$lpi_master_offset-lpi_refresh_time \leq mod(v, lpi_qr_time) < description and the second secon$	lpi_master_offset	$mod(v, lpi_qr_time) \geq lpi_quiet_time$	0 or 1
mod(v, alert_period) = alert_period - alert_length		$mod(v, alert_period) = alert_period - 1$	0
mod(v, lpi_qr_time) = lpi_master_offset + lpi_refresh_time +	+ 1	mod(v, lpi_qr_time) = lpi_qr_time -1	1

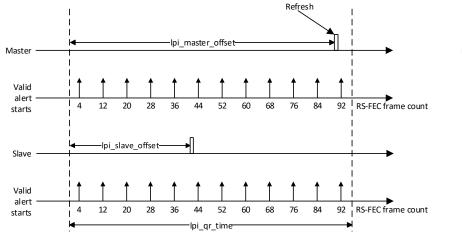


Figure 165–13—Timing periods for LPI signals when Slow Wake not active

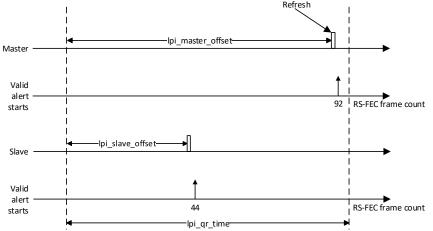


Figure 165–14—Timing periods for LPI signals when Slow Wake is active

I support adopting the proposed clarifying text updates on slides 4 through 10 of this presentation

Y: N:

Move to adopt the text updates on slides 4 through 10 of this presentation with editorial license to implement

M: Ragnar Jonsson S:

Technical (>=75%) Y: D: A: Motion Passes/Fails

Backup Slides

From jonsson_etal_3cy_01b_05_24_22

Engineering consideration for the EEE signaling

- 1) The SLEEP and WAKE signals should always start and end at super-frame boundary
- 2) The WAKE signal should immediately follow the ALERT signal
- 3) The end of ALERT signal should be aligned with end of super frame
- 4) The duration of the ALERT signal should be 4 RS-FEC frames
- 5) Master and Slave should have predefined offset between the start of their respective QR sequence
- 6) It is OK to have overlap between Master and Slave ALERT signals
- 7) There should be no overlap between REFRESH and ALERT signals
- 8) The REFRESH signal duration is always a single RS-FEC frame
- 9) The REFRESH signal does not need to end at the end of a super frame

SLEEP Frame Alignment

 The SLEEP and WAKE signals should always start and end at super-frame boundary

SLEEP		QR		
Super	Super	Super Frame	Super	
Frame	Frame	Frame	Frame	
m-2 m-1 m m+1				

Longest Super-Frame has 8 RS-FEC frames

QR cycle must start at an 8 frame Super-Frame boundry

ALERT and WAKE Frame Alignment

- The SLEEP and WAKE signals should always start and end at super-frame boundary
- The duration of the ALERT signal should be 4 RS-FEC frames
- The WAKE signal should immediately follow the ALERT signal
- The end of ALERT signal should be aligned with end of super frame

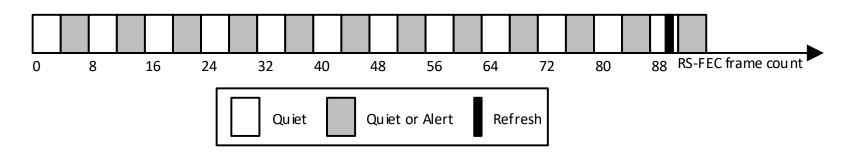
	ALERT	WAKE		
Super	Super	Super	Super	
Frame	Frame	Frame	Frame	
n-2 n-1		n	n+1	

Super-Frame is 8 RS-FEC frames ALERT is 4 RS-FEC frames

ALERT must start at 5th RS-FEC frame in an 8 frame Super-Frame

Shortest Possible LPI Signaling

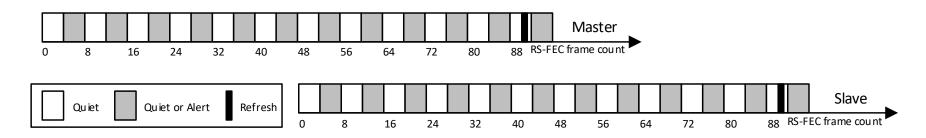
- The constraints on SLEEP and WAKE signal frame alignment, force at least one Super-Frame separation between them
- Same constraints force the first four RS-FEC frame periods to be a QUIET signal in the QR cycle


SLI	EEP	QUIET	ALERT	WAKE	
Super	Super	Super		Super	Super
Frame	Frame	Super Frame		Frame	Frame
m-2	m-1	m		m+1	m+2

General LPI Signaling

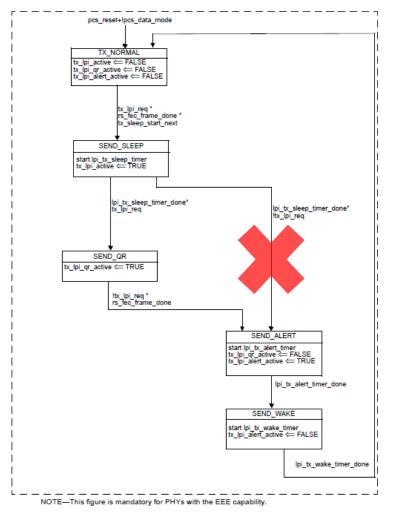
- The separation between SLEEP and WAKE signals must always be an integer multiple of Super-Frames (8 RS-FEC frames)
- ALERT signal can be allowed at the end of any Super-Frame during the QR cycle

SLE	EP	QU IET		ALERT	WAKE	
Super	Super	Super	•••	Super	Super Frame	Super
Frame	Super Frame	Frame		Frame	Frame	Frame
m-2 m-1 m n-1				-1	n	n+1


Placing the Refresh Signal

- ALERT signal is allowed in the last four frames of any Super-Frame
- REFRESH and ALERT signals should not "collide"

- REFRESH signal should be placed in one of the four first frames in a Super-Frame
- Frame 90 would be a good place for the REFRESH signal


Master/Slave QR Cycle Offset

- The master and slave REFRESH signals should not "collide"
- This can be avoided by offsetting the slave QR cycle relative to the master QR cycle
- For a 96 frame QR cycle, 48 frames is a good choice for the slave QR cycle offset

Sleep to Alert Transition

 Because of frame alignment constraints, the SEND_SLEEP state can never transition straight into SEND_ALLERT

Change the text in 165.4.3.1 to

The symbols to be transmitted by the PMA are denoted by tx_symb. When the tx_mode is SEND_N, tx_symb represents the 25GMII data stream, and PMA Transmit generates a pulse-amplitude modulated signal on each pair in the following form:

$$s(t) = \sum_{n=0}^{\infty} a_n h_T(t - nT)$$
 (165 - 12)

In Equation (165–12), a_n is the PAM4 modulation symbol from the set {-1, -1/3, +1/3, +1} to be transmitted at time nT, and $h_T(t)$ denotes the system symbol response at the MDI. This symbol response shall comply with the electrical specifications given in 165.5.6.(165–12). During training or quiet-refresh signalling, tx_mode is SEND_Z or SEND_T. During training or quiet-refresh signalling, pMA Transmit the value of a_n is a PAM modulation symbol {+1, 0, -1}. NOTE – during the first 150 ns following a transition to quiet-refresh signalling, the output of the transmitter may be ignored by the receiver.

Essential technology, done right[™]