

Micro Reflections Limit on ETM

### Hossein Sedarat

March 15, 2022

### Overview

- Draft 0.5 includes time-domain limits on echo channel
- Residual Echo Metric (REM): Limit on the total power of microreflections
  - The specification is complete
- Echo-Tail Metric (ETM): Limit on distribution of micro-reflection power over the span of echo response
  - The specification is incomplete
- This presentation is to propose some limits for ETM

# Echo Pulse Response

- Echo response consists of a few major reflection points (due to connectors) and back-ground micro-reflections (due to inhomogeneity of the cable)
- Significant computational power of PHY is dedicated to cancel micro-reflections
- A limit on the power of micro-reflections can help reduce the complexity of the PHY





# Micro-Reflection: Cumulative Power

- The power of micro-reflections, if not cancelled, contributes to the overall noise and limits the SNR
- ETM is the cumulative power of the microreflection from the tail end of the echo pulse response
- REM is the total power of micro-reflections for the entire span of the echo response
  - REM = ETM at time zero



## Limits on Micro-Reflection: REM

• The limit on REM: determines the required level of cancellation of micro-reflections to meet a target SNR



# Limits on Micro-Reflection: Tail Power

- The limit on REM: determines the required level of cancellation of micro-reflections to meet a target SNR
- A limit on ETM: determines the span of time beyond which the power of micro-reflections is negligible, hence they can remain uncancelled



# Limits on Micro-Reflection: Slope

- The limit on REM: determines the required level of cancellation of micro-reflections to meet a target SNR
- A limit on ETM: determines the span of time beyond which the power of micro-reflections is negligible, hence they can remain uncancelled
- A limit on ETM slope: a minimum rate of reduction in micro-reflection power which provides a bound on the magnitude and the resolution of the echo canceller coefficients



## Limits on Micro-Reflection

• The limit on REM: determines the required level of cancellation of micro-reflections to meet a target SNR

• A limit on ETM: determines an efficient distribution of computational resources over the span of the echo-canceller



# **REM/ETM Calculations**

### • Current adopted algorithm:

- Breaks echo response into small segments
- Discards the segments with highest power
- It does not decompose the echo pulse response into major and micro reflections
- ✓ REM is the overall power of residual segments and is a reasonable estimate of the total power of micro-reflection
- ✗Calculated ETM includes the effects of major reflections, artificially elevating the accumulated power and reducing the slope of ETM



HERNOVIA

### ETM vs REM

• *REM* is the power of micro-reflections for the entire echo pulse response ( $t \ge 0$ )



•  $ETM(t_0)$  is the power of micro-reflection for the echo pulse response over  $t \ge t_0$ 



# **New ETM Algorithm**



Proposed new ETM algorithm is the same as REM algorithm with partial echo pulse response as its input

# **Far-end Reflection Elimination**

- The reflection from the far-end of the cable is due to discontinuity at the remote MDI
  - Cable measurements do not provide a good representation of this reflection point in a live link
  - This reflection is not due to inhomogeneity of the cable and should not contribute to the power of micro-reflections
  - This reflection may be explicitly eliminated from echo pulse response before ETM calculation
- The position of this major reflection is easily determined by estimating the propagation delay of the cable from  $\rm S_{12}$  ,  $\rm S_{21}$



# Proposed Limit on ETM

- Using N\_discard=6 and all other parameters as adopted for REM, the calculated ETM follows the cumulative power of micro-reflections closely
- A limit for ETM may be tied to the limit of REM as:

| $ETM(t) \leq REM_{limit} - 16^*(t\text{-}5)/55$ | 5 ns ≤ t < 60 ns |
|-------------------------------------------------|------------------|
| $ETM(t) \leq REM_{limit} - 16$                  | 60 ns ≤ t        |



### Matlab Code for ETM Calculation

- sedarat\_3cy\_01\_0315.m: slightly modified version of jonsson\_092821
- Changes are limited to
  - Estimation of propagation delay
  - Calculation of ETM

|                                                                                                                           | ETM Calculation                                                             |                                                                |                                                                                                                                                                                                      |  |
|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 134<br>135<br>136<br>137 -<br>138 -<br>139 -<br>140<br>141 -<br>142 -<br>143<br>144 -<br>145 -<br>146 -<br>147 -<br>148 - | <pre>ETIM Calculation % MODIFIED !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!</pre> | 61 %<br>62 %<br>63 - i<br>64 - x<br>65 - dl<br>66 - dl<br>67 % | <pre>MODIFIED MODIFIED Calculate propagation delay = find((f &gt; 100e6) &amp; (f &lt; 5625*2.5e6)); = s12(i); y = [ones(length(x), 1) -2*pi*f(i)']\unwrap(angle(x(:))); y = dly(2); MODIFIED </pre> |  |
| 149 & MODILIED                                                                                                            |                                                                             |                                                                |                                                                                                                                                                                                      |  |

# Summary

- A limit on ETM helps with efficient distribution of computational resources within echo canceller
- The current ETM algorithm does not provide a good estimate of cumulative power of micro-reflections
- A new algorithm is proposed which calculates the  $ETM(t_0)$  as the REM of the echo pulse response for  $t \ge t_0$
- A limit line for ETM is proposed
- No change to REM calculation