Laning approach for 802.3cy

George Zimmerman CME Consulting, Inc / Marvell

Acknowledgement

- A special thank you to:
 - Marek Hajduczenia
 - Glenn Kramer
 - Natalie Wienckowski

For their patience, good advice, and insights on how we might adapt clause 143 for laning 25GBASE-T1 PHYs into a 50G or 100G link

Basic Laning Approach

- Several choices at first, one at last:
 - Lane PMA only as a unit? (combine at FEC) (like Cl 55)
 - Similar to BASE-T model, although FEC isn't separate sublayer
 - Lane PMA & FEC as a unit? (combine at PCS) (like CI 91 & 94)
 - Allows integration and repetition of a PMA/FEC with independent BER
 - Lane PMA/FEC/PCS as a unit? (combine at RS) (CI 143)
 - Allows independent PHY units to be bonded
 - PCS & FEC can still be internally laned if needed, independent of PMA

Lane PMA + FEC + PCS

3/15/2021 - G. Zimmerman

IEEE P802.3cy Greater than 10 Gb/s Electrical Automotive Ethernet Task Force - March 2022 IEEE 802 Plenary

Key Feature Decisions

- Architecture: PHYs joined at RS layer, PCS/PMA separate at 25G
- PHY-level Interface:
 - -2x or 4x 25 Gbps is this 25 GMII?
- How much smarts to put in the RS?
 - Need coordinated control of Resets and EEE modes modes
 - Need skew correction, alignment
 - Need lane swap correction
- Clause 143 has a lot of this, but more, and more complication
 - Designed for EPON
 - Uses MAC Control primitives specific to EPON

Clause 143 architecture

- Designed to work controlled by the MPMC
 - EPON MAC control sublayer provides MCRS_CTRL primitives not in Clause 4 MAC
- MCRS binds a MAC to multiple xMIIs
 - Each MAC is an "LLID" talking to multiple PCS/PMAs
 - Directions are independent
- MCRS converts serial MAC transmit data into parallel PHY streams
- MCRS maps xMII signals into individual MAC primitives
- Generates & expects continuous data & control characters

Figure 143–1—Relationship of MCRS to the OSI reference model

Source: IEEE P802.3dc D3.0, 143.1, 143.2

Clause 143 Envelope Quantum

- Clause 143 divides data into 'Envelopes'
 - Envelope is a continuous transmission by a specific LLID (MAC iD) on a specific downstream / upstream channel
 - One EQ is 72 bits 64 data and 8 control

Figure 143–2—Envelope quantum (EQ) format

Source: IEEE P802.3dc D3.0

Envelope Headers Mitigate Skew

- Envelope Start Header records order of envelope at the transmitter
 - "EPAM" field stores index
- Controls position stored in receive buffer
 - Envelopes read out in order
 - (buffer depth dependent on skew to tolerate)

Envelope Header - detail

- Contains:
 - Start control code (0xFB)
 - EnvType flag bit
 - indicates start vs. continuation
 - EPAM (position alignment)
 - CRC8
 - Rest may not be needed by .3cy:
 - 22-bit Envelope Length field (suggest fixed-length)
 - two bits (E and K) reserved for encryption purposes
 - an LLID field (multiple MACs)

Figure 143–10—Mapping of envelope header fields into two xMII transfers Source: IEEE P802.3dc D3.0

Clause 143 is more general than we need

- Allows multiple MACs to share multiple channels in a flexible way
- Allows dynamic rate bonding as traffic demands
- Enables buffering to accommodate FEC overhead
 - EPON PHYs pause data to accommodate FEC overhead

Source: IEEE P802.3dc D3.0 Figure 143-7-Internal structure of EnvTx and EnvRx buffers

IEEE P802.3cy Greater than 10 Gb/s Electrical Automotive Ethernet Task Force - March 2022 IEEE 802 Plenary

Alternative

- Define a completely new laning
 - High speed laned PHY alignments are generally in the PCS, not the MII
 - Define alignment markers in the PHY frames
 - Unnecessary overhead in every 25Gb/s Ethernet link
 - Define new interfaces for the 25G PHYs when laned
 - Possibly different than 25GMII

Key parameters simplify

- EPAM records the relative position of an envelope
 - -6 bit field which controls the receive buffer positioning
 - EPON lanes could have a lot more skew than .3cy
 - But frequency lanes can't cross... so it is 'row' (skew) only
 - 802.3cy can divide the 6 bits of EPAM as row and column (lane)
- ADJ_BLOCK_SIZE, RATE_ADJ_SIZE can be zero
 No FEC overhead to allow, no rate-matching needed
- LLID (for multiple MACs) is not needed can be reserved

BUT... We have to add something

Requires MPMC (EPON MAC Control) or some other modification to generate MAC control primitives used in CI 143 state diagrams

- MCRS_CTRL[ch].request(link_id, epam, env_length) primitive
 - Generated by the MPCP to request the next envelope transmission
- MCRS_CTRL[ch].indication() primitive
 - Generated by the MCRS to indicate that a given channel (lane) is ready for an envelope
- MCRS_ECH[ch].indication(Llid) primitive
 - Generated by the MCRS that an envelope has been received generates the local timestamp

Possible Path forward

- Add a function to pass envelopes to the RS to have a simpler MCRS?
 - Only needed on the transmitter
 - Receive works normally just needs TSSI interface
- Function can be in MAC/switch chip
- Enables reuse of interface and stand-alone PHY

MAC (e.g., 100G)

Envelope Passing function

Single-LLID Clause 143 variant With 2 or 4 lanes

25GMII

25GMII

25GMII

25GMII

Interface to 25GBASE-T1 PHYs

Key simplifications & Path to Completion

- Fixed Envelope Size
- Fixed number of channels

 No fallback to lower rate if one lane fails
- No need for rate adaption
 - FEC overhead accounted in PHY baud rate
- Result: No MCRS primitives?
 - Simplify MCRS transmit function to eliminate need for MCRS

Source: IEEE P802.3dc D3.0

Redrawing the Tx Function (concept – soliciting contributors)

Figure 143–12—MCRS transmit function, Input process state diagram

Figure 143-12-MCRS transmit function, Input process state diagram

Discussion?

THANK YOU!