

Discovery Thresholds

Michael Paul

TF Objectives Related to Discovery

IEEE P802.3da Objectives - continued

- Specify optional plug-and-play power distribution over the mixing segment
- 10. Define a method to detect at least one MPD before applying full operating power
- 11. Specify device characteristics necessary to enable addition and/or removal of a node or set of nodes to a powered mixing segment with a bounded interruption

Source: 802d3da_objectives.pdf (ieee802.org)

State of Discovery in Clause 169

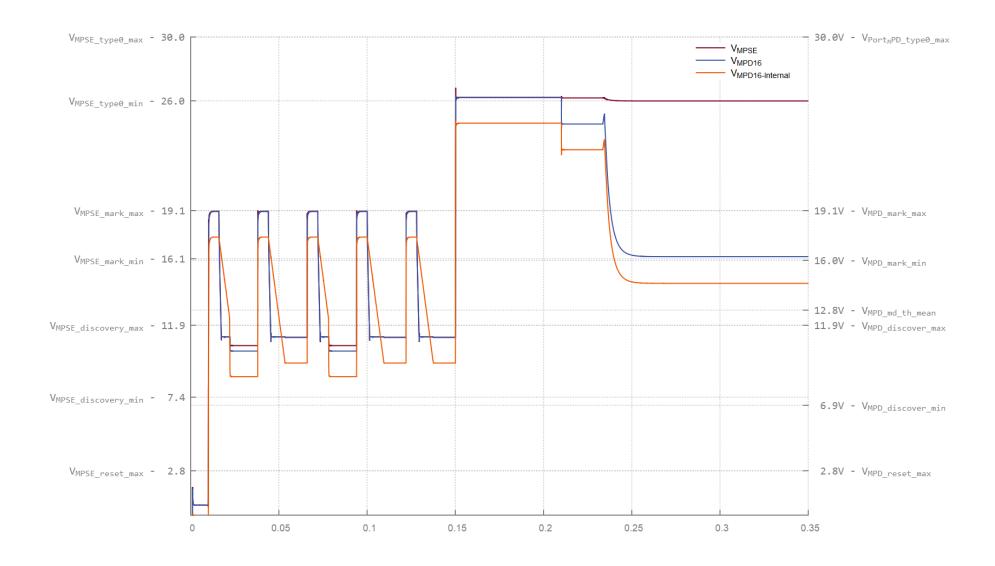
- ▶ Discovery state machines are described for MPSE and MPD
- ▶ Some MPSE discovery parameters are defined
 - Many TBDs
 - Need to update most parameters
- ► No MPD discovery parameters are defined
 - Subsection "169.5.4 MPD Discovery" is empty
 - Need descriptive text and a table
 - Various table references in the MPD state machine section are 'TBD'
- ▶ Background presentation on MPoE Discovery
 - Paul_da_01_20230712.pdf

Discovery Objectives

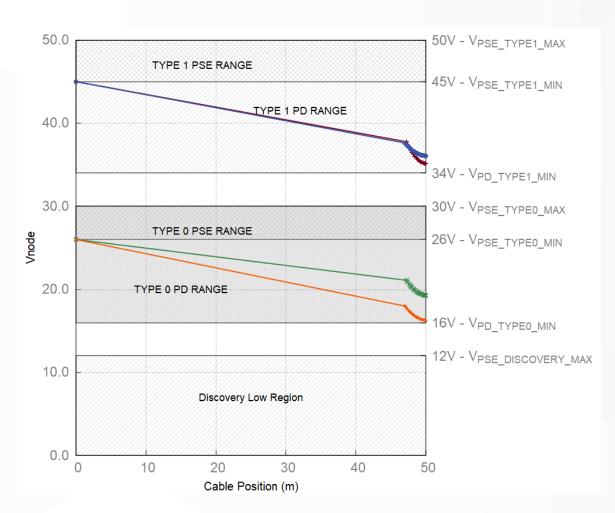
- ▶ Gain telemetry before power up
 - Debug link issues
 - Overloaded link Too much load
 - Shorted link
 - No MPDs connected / open link
 - Incompatible MPSE / MPDs
 - Some MPDs not accepting power after power-up
 - Back-fed power into PSE
 - Etc...
- ▶ Discovery is not mutual identification
- Discovery is not power negotiation
- ► Ensure remote experts can aid non-expert installers
 - Gain rudimentary knowledge on why power may not be working when data path is not available
 - Report exceptions up the stack for system logs
- Requires that compliant PDs respond to discovery

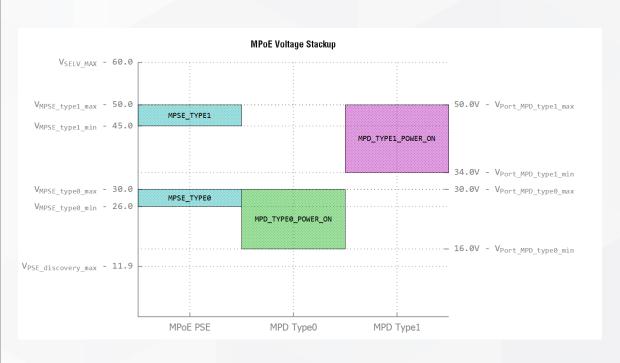
17 January 2024

Discovery Implementation Requirements


- ▶ Discovery system must be
 - Low cost
 - Low risk
 - Keep wide margins between operating regions
- ▶ Proposed physical layer signaling is a modified version of PoE classification
 - Borrow approximate thresholds
 - Borrow approximate margins
 - Borrow approximate operation regions
- ▶ Necessary MPD discovery hardware
 - ~1mA Current source
 - State memory
 - 5 bits
 - Comparator
 - Shared with power on threshold
 - Timer
 - Shared with inrush backoff timer

Operating Regions


Discovery / Power-Up Transient - Type 0 System

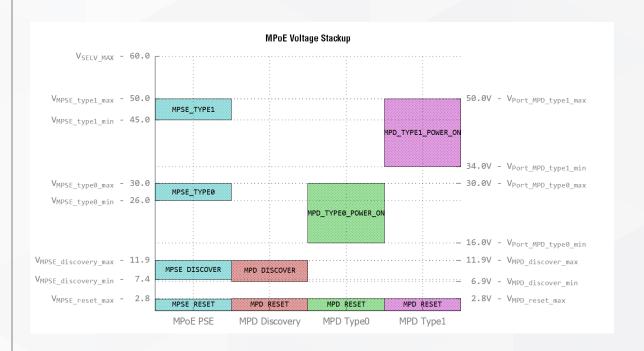


Presently Defined Powering Regions

Graph Source: mpaul-01_da_2023_11_13.pdf, slide8

Operating regions redrawn in separate columns depending on PSE / TYPEO MPD / TYPE1 MDP Starting point for this presentation

Add Reset Regions


- ► Use same reset thresholds as PoE
 - Clause 33 and Clause 145
- ► VMPSE_reset_max = 2.8V
- ► VMPD_reset_max = 2.8V

Add Discovery Low Region

- ► Add the discover low region
 - VMPD_discover needs margins between
 VPort_MPD_TYPE0 and VMPD_reset
 - 4.1V Gaps to other operating regions
 - Consistent with PoE Class / Mark thresholds
- ► Cable Drop From PSE to MPDs
 - 16 nodes * 2mA * 12Ω = 0.288V
 - 0.5V Drop Margin allocated to cable drop in MPD_DISCOVER_LOW region

POWER_ON, HOLDOFF, and NO_POWER States (1/2)

- ► When MPD voltage enters VPort_MPD_TYPE0 region
- ► MPDs wait Tinrush_backoff for the mixing segment voltage to settle

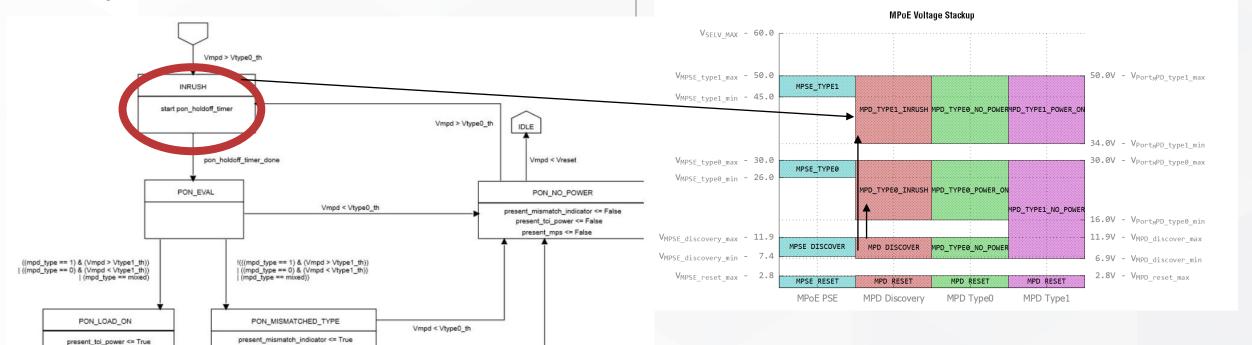
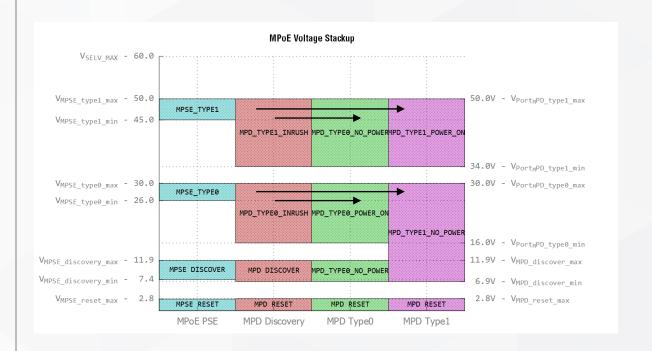
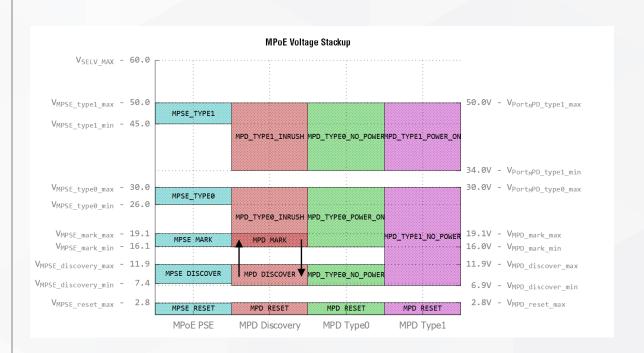


Figure 169-7—Top Level PD state diagram (continued)


((mpd_type == 1) & (Vmpd < Vtype1_th)) | ((mpd_type == 0) & (Vmpd < Vtype0_th))

present_mps <= True

POWER_ON, HOLDOFF, and NO_POWER States (2/2)


- ► After Tinrush_backoff,
 - MPDs may enter POWER_ON region and begin sourcing power
 - If the MPSE and MPD types are incompatible, the MPD enters a NO_POWER state
- ► Hot added MPDs will immediately enter MPD_TYPEn_INRUSH state and will not participate in Discovery

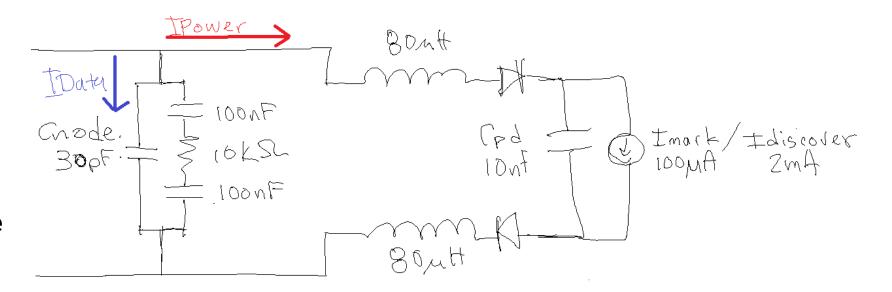
MARK region

- ► VMPD_MARK overlaps VPort_MPD_TYPE0
- ▶ Use same current draw in both states
 - IMPD_mark
- ► VMPD_mark_min = VPort_MPD_TYPE0_min
 - Maintain wide separation between POWER_ON and MPD_DISCOVER regions
 - Transition from MPD_MARK to
 MPD_TYPE0_POWER_ON after Tinrush_backoff
- Reuse DISCOVER->POWER_ON comparator

What Cpd is really required

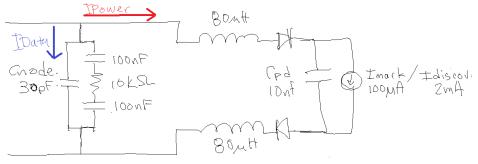
- ▶ 100nF value comes from rule of thumb
 - Really Required?
- ▶ Use 10nF instead?
 - Speed MPD Mark Discovery discharge
 - Disturb the system less during a hot-plug event
 - Help with TF Objective 11

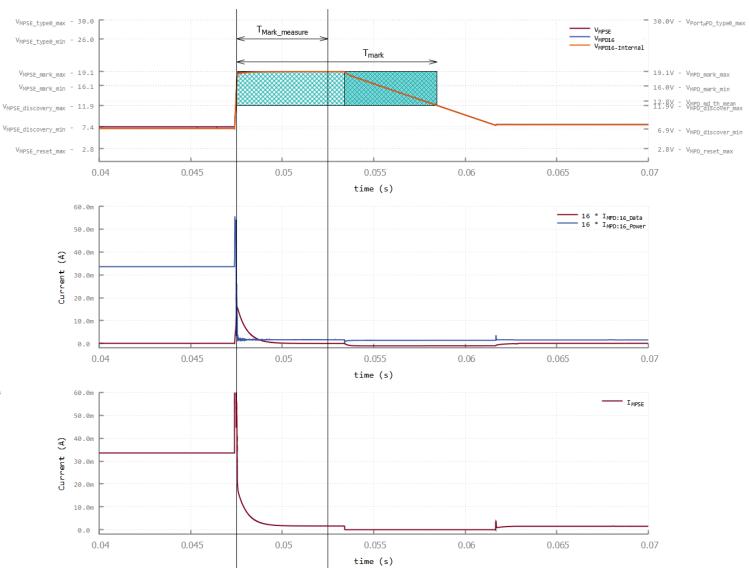
Discovery Settling Time


Discovery Settling Time

Discovery Settling Time Factors

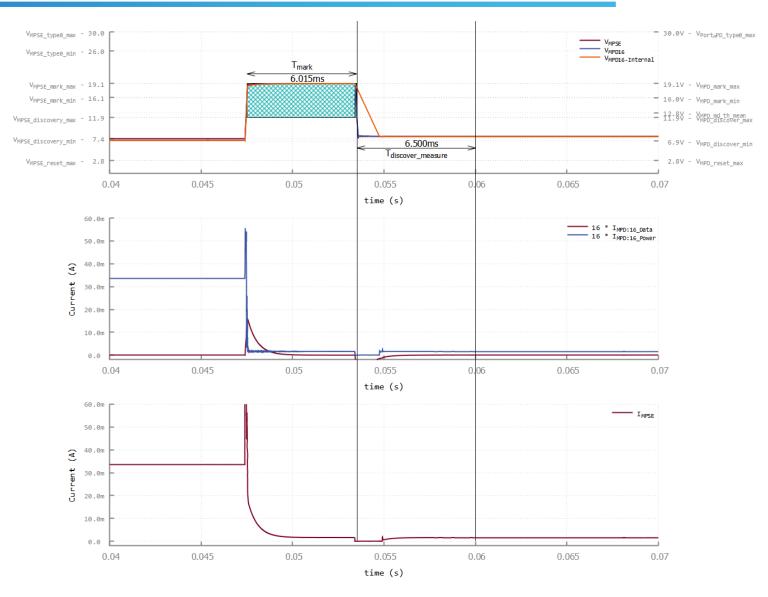
► Power Path Current


- Cpd (10nF)
- IMPD_mark / IMPD_discover
- VMark Vdiscover
- ▶ Data Path Current
 - MDI Resistance (10k Min)
 - Phy Coupling Capacitance
 - 2x 100nF in series = 50nF
 - Cnode is negligible

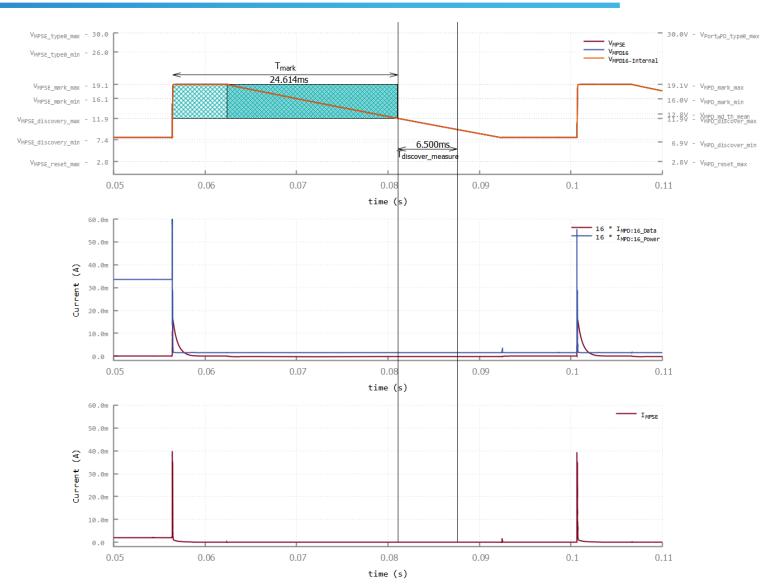


Mark Settling Time

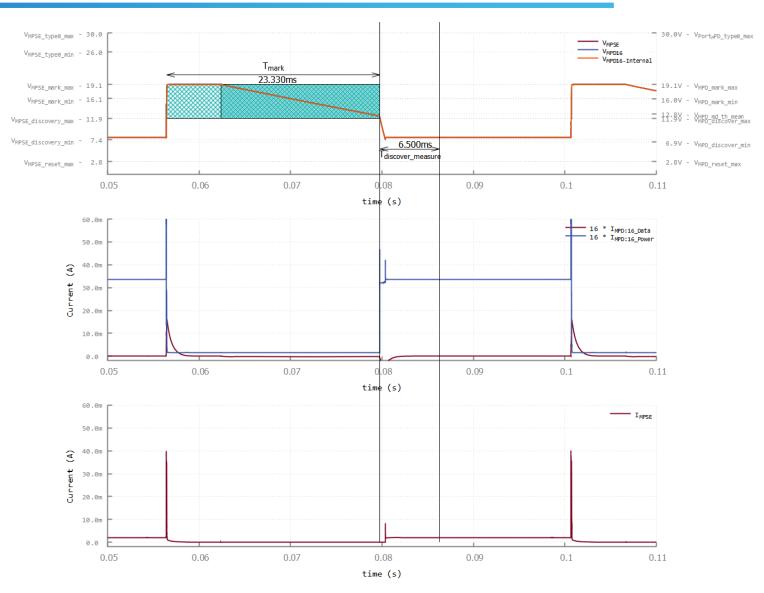
- ▶ Dominated by data path
 - $t = 10k\Omega * 50nF = 500us$
 - Require at least 10*t so data current does not affect mark measurement
 - TMark_measure > 5ms



Discovery Settling Time (1/3)


- ▶ Best Case Scenario
 - Strong MPSE pull-down
- ▶ Power Path settle time
 - T = 12nF * 12.2V / 100uA =~ 1.5ms
- ▶ Data Path Settle time
 - 5ms (from previous slide)
- ► Set TDiscover_measure > 6.5ms

Discovery Settle Time (2/3)


- ▶ Worst Case Scenario
 - Weak MPSE pull-down
 - 1M0hm
 - 1x MPD
 - MPD sinks IMPD_mark
- ▶ Power Path settle time
 - MPD discharges
 - Cpse (100nF)
 - Data Path Caps (50nF)
 - Cpd (12nF)
 - T = 162nF * 12.2V / 100uA =~ 20ms
- ► TDiscover_measure is a min. limit
 - MPSEs with weak discovery pulldown must allocate more time before measuring discovery

Discovery Settle Time (3/3)

- ► For Comparison
 - Weak MPSE pulldown
 - 1M0hm
 - 1x MPD
 - MPD sinks IMPD_discover

Clause 169 Updates

Update "Table 169-3—MPSE Discovery Parameters"

Item	Parameter		Symbol	Min	Max	Units	Additional Information
	1	Discovery high mark voltage	V_{Mark}	16.1	19.1	V	
	2	Discovery low mark voltage	V_{Discovery}	7.4	11.9	V	
	3	Discovery current limit	I_{Discovery_LIM}	50	100	mΑ	
	4	Discovery high event time	T_{Discovery_high}	7	-	ms	
	5	Discovery low event time	T_{Discovery_low}	20	TBD	ms	MP_NOTE: 18ms for 100nF PD settling + 2ms for measurement stabilization
	6	Discovery time	T_{Discovery}	-	TBD	ms	MP_NOTE: finalize after other timing parameters are solid
	7	Discovery backoff time	T_{Backoff}	150	-	ms	
	8	Mark short circuit threshold	I_{Mark_short}	3	4	mΑ	
	9	Discovery all MPD present range	I_{MPD_present}	0.8	40	mΑ	I_{Discovery}-I_{Mark}
	10	MPD type present	I_{Type_present}	0.8	40	mΑ	I_{Discovery}-I_{Tare}
	11	Mark Measurement Delay	T_{Mark_measure}	5	-	ms	MP_NOTE: 1ms longer than MPD mark stability time
	12	Discovery Measurement Delay	T_{Discover_measure}	6.5	-	ms	Based on Mark-Discover Fall time (10nF Cpd)
	13	Discovery Reset	V_{MPSE_reset}	0	2.8	V	

- ► Green values are changes in the table
- ▶ Using LaTeX notation where _{xx_yy} means xx_yy is subscript

Add New Table in Subsection "169.4.5 MPD Discovery"

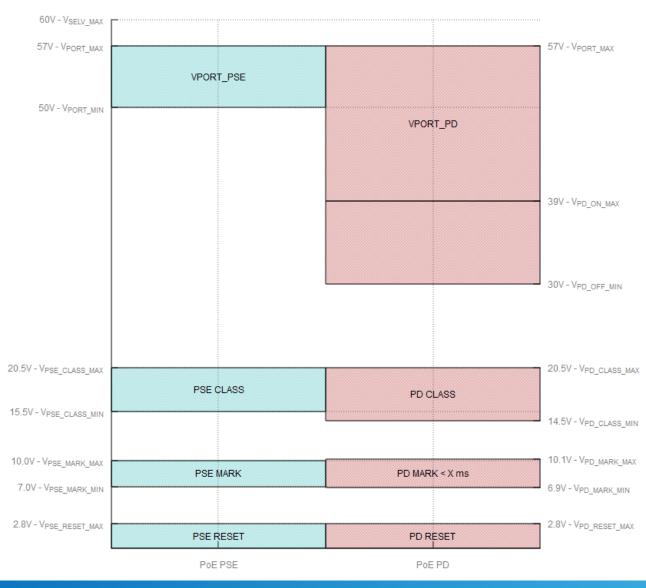
Item	Parameter	Symbol	Min	Max	Units	Additional Information
1	Mark Event Voltage	V_{MPD_mark}	16	19.1	V	
2	Discovery Event Voltage	V_{MPD_discover}	6.9	11.9	V	
3	Mark Event Current	I_{MPD_mark}	100	200	uA	
4	Discovery Event Current	I_{MPD_discover}	1	2	mΑ	
5	Discovery reset threshold	V_{MPD_reset}	2.8	6.9	V	
6	MPD discovery stability time	T_{MPD_discover}	-	6	ms	MP_NOTE: Data Path and Power Path Settling
7	MPD mark stability time	T_{MPD_mark}	-	3	ms	MP_NOTE: 6*tau Data Path Settling time

23 January 2024

23

Conclusion

- ▶ Discovery mark region can overlap Type 0 power region
 - Use timers to differentiate state
 - Wide margin make system easier to implement
- ► Settling time is dependent on power path capacitance and data path capacitance
- MPSEs with weak pull down need to budget extra settling time in discovery


Appendix Slides

18 January 2024

PoE Voltage Stackup (Clause 145)

Offset Sources

▶ Diodes

- S1B @ -40C, 100mA
 - Vf =~ 0.9V
 - 2*Vf = 1.8V

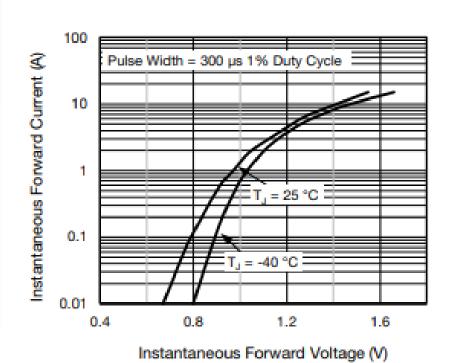


Fig. 3 - Typical Instantaneous Forward Characteristics

- ► Cable Offset
 - **30mA @ 12Ω**
 - 0.36V
- ▶ Diodes
 - S1B @ -40C, 100mA
 - Vf =~ 0.9V
 - 2*Vf = 1.8V
- $\ge 2*Vf + Vcable = 2.26V$