
IEEE 802.3da

Canova Tech
The Art of Silicon Sculpting

PLCA Corner-case Fixes
Feb, 23rd 2022

IEEE 802.3da

Outline

• Since 802.3cg was approved, a number of rare (unwanted) corner-case

behaviors were found in the PLCA state diagrams

– These are really unwanted behaviors that are not covered by the PLCA state

diagrams model defined in Clause 148

– Reasonable implementations already worked around these flaws/limitations

– Still, I think the model should be updated to cover all cases and be consistent

• This presentation shows what these corner cases are and suggests fixes

– In no case these changes break interoperability with what is currently defined in

Clause 148

Page 2

IEEE 802.3da Page 3

#1: Data corruption when dynamically
switching from plain CSMA/CD to PLCA

IEEE 802.3da

PLCA Control State Diagram, part a

#1: problem

• Assuming the coordinator node (local_nodeID = 0)

has PLCA enabled (plca_en = TRUE) but no BEACON

has been sent so far (plca_status = FAIL)

– This may happen when enabling PLCA on-the-fly

• Because of plca_status being FAIL, the PLCA DATA

State Diagram is stuck in NORMAL state

– That is, “plain” CSMA/CD behavior

Page 4

PLCA DATA State Diagram

IEEE 802.3da

PLCA Control State Diagram, part a

#1: problem

• The PLCA Control State Diagram
moves through RECOVER and
WAIT_TO states (1, 2) then waits
for one cycle of TOs (repeat 3, 4)
before entering RESYNC state
(5, 6)

• Note that during this time,
plca_active = FALSE, hence
plca_status = FAIL

• If the MAC initiates a frame
transmission at this time, it
would be sent immediately
(provided that CRS allows it)

Page 5

PLCA DATA State Diagram

1
2

3, 5

4

6

IEEE 802.3da

#1: problem

• The problem shows up if the aforementioned frame is

sent a few bit times before the PLCA Control state diagram

enters the RESYNC state

• In such a case, the CRS would not yet be asserted due to

the MII and PHY latencies, therefore letting the PLCA

Control state diagram go to SEND_BEACON state

– This makes the PLCA Data state diagram move to IDLE state

(because plca_active = TRUE, plca_status = OK)

• In IDLE state, the frame data coming from the MAC is

overwritten by tx_cmd being set to BEACON

– The frame gets corrupted at the MII (!)

Page 6

PLCA DATA State Diagram

PLCA Control State Diagram, part a

IEEE 802.3da

PLCA Control State Diagram, part a

#1: fix

• A simple solution to prevent this race condition

is to inhibit the PLCA Control State Diagram from

entering the SEND_BEACON state while the DATA

State Diagram is in the process of sending a

frame.

• Additionally, the transition from NORMAL to IDLE

in the PLCA DATA State Diagram should be

conditioned by CRS being low

Page 7

(!TX_EN) *

PLCA DATA State Diagram, part a

(!CRS) *

IEEE 802.3da Page 8

#2: Data corruption at the end
of an aborted PLCA burst

IEEE 802.3da

#2: background

• When PLCA burst mode is activated (max_bc > 0), the PLCA RS waits the MAC to send a

new frame for the duration of “burst_timer” before moving to the next transmit

opportunity.

– During this time, a COMMIT is conveyed to the PHY to “keep” the current TO by extending the

carrier (CRS = TRUE).

• If the MAC conveys a new frame while the burst_timer is active, the burst succeeds and

the PLCA RS forwards the frame to the PHY via MII (appended to the COMMIT)

• else (i.e. the MAC has no further frames to send), the PLCA RS aborts the burst and moves

to the next TO

– If the MAC initiates a frame transmission (plca_txen = TRUE) concurrently with the burst_timer

expiration, the PLCA RS is supposed to just act as normal, delaying the frame until the next TO...

• BUT there’s a race condition in the state diagrams!

Page 9

IEEE 802.3da

#2: problem

• When the burst_timer expires, the PLCA Control State Diagram

goes from BURST to ABORT state.

• Meanwhile, the PLCA Data state diagram is waiting in

WAIT_IDLE state for the MAC to send a new frame (plca_txen

= TRUE) or the burst to be aborted (CRS going low due to

tx_cmd being set to NONE)

• However, if the MAC starts conveying a frame a few bit times

after the burst was aborted (before MCD), the PLCA Data state

diagram would take the path of the successful burst “B” while

the PLCA Control state diagram already aborted the burst (!)

– This may lead to the frame being corrupted and to unwanted

collision on the line

Page 10

PLCA DATA State Diagram, part a

IEEE 802.3da

#2: fix

• The fix is to avoid the race condition by

removing the synchronization on the MII clock

(MCD) which is not required in that state

anyway.

• Then, we can synchronize on the “committed”

variable, instead.

Page 11

PLCA DATA State Diagram, part a

IEEE 802.3da Page 12

#3: frame aborted by the upper
layers (plca_txer = 1)

IEEE 802.3da

#3: background

• The PLCA RS detects collisions by both monitoring the COL signal from the

PHY and checking transmissions vs transmit opportunities

• In the latter case, the PLCA RS relies on the MAC to backoff and make a new

attempt at sending the frame after the carrier indication goes off

• If the upper layers aborted the frame concurrently with the PLCA RS

detecting a collision (very rare race), the next transmit opportunity may be

skipped, leading to wasted bandwidth and/or multiple collisions

Page 13

IEEE 802.3da

#3: solution

• A simple fix is to check the already

existing plca_txer variable while the

PLCA Data State Diagram is in the

COLLIDE state.

• If plca_txer is set, just go into ABORT

state, letting the PLCA RS serve the

next TO without setting packetPending

to TRUE

Page 14

PLCA DATA State Diagram, part a

PLCA DATA State Diagram, part b

IEEE 802.3da Page 15

CONCLUSIONS

IEEE 802.3da

Conclusions

• The current definition of the PLCA state diagrams hides unwanted (rare) race

conditions leading to corrupted frames and/or performance loss

• This presentation shows simple fixes that don’t break interoperability with

systems implementing what’s currently specified in Clause 148.

• I suggest 802.3da to adopt these fixes as enhancements over 802.3cg

Page 16

IEEE 802.3da Page 17

THANK YOU

