

Channel Resistance Breakdown

Michael Paul

My goal is to write MPD inrush baseline text

Several critical parameter remain undefined and must be addressed

▶ This presentation is broken into 3 parts

- 1. Channel Resistance Breakdown (this presentation)
- Voltage Stack-up (https://www.ieee802.org/3/da/public/0827/Paul_da_02_20230830.pdf)
- MPD Inrush / Power-On Baseline Text (https://www.ieee802.org/3/da/public/0827/Paul_da_03_20230830.pdf)

Characteristics that drive forwardlooking concepts and details:

- Number of nodes (16)
- Mixing Segment Loop Resistance (15Ω)
 - Cable Gauge (23g)
 - Channel length (50m)
 - Connector resistance (58mΩ)
 - Compensation component resistance (355mΩ)

► Then choose:

- MPSE minimum power on voltage
- Which determines:
 - Available power per node
- ► To Enable Specification of:
 - Voltage Stack-Up / Operating thresholds
 - Reset, Discovery, Type 0, Type 1
 - And enable Objective 11
 - Addition / Removal from powered mixing segment
- Author Clause 169:
 - Inrush attributes
 - Power on attributes
 - Discovery time, voltage, current attributes
 - Maintain Power Signature (MPS) attributes

Diagram of Channel Resistance Components

▶ 23g cable measurements (IEEE802.3 Appendix 145C)

- 74.4mΩ/m (2-pair resistance, cat cable, loop)
- 148.8mΩ/m (Single twisted-pair, loop)
- 50 meters * 148.8mΩ/m = 8.78Ω

Temp. (°C)	23g Cable Resistivity (mΩ / m)
20	148.8
65	175.6

T-Connectors Resistance Measurement Setup

Same T-Connectors used for AC Correlation in this presentation: https://www.ieee802.org/3/da/public/0523/Paul_da_01_05152023_v0.pdf

4-Wire Resistance Measurement Setup

Measurement Procedure

- Force Current
 - Terminals:
 - Force+, Force-
 - 100mA to 1A
 - 100mA steps
- Measure Voltage
 - Terminals:
 - Sense+, Sense-
- Curve fit slope

Senset ~

Force +

Force-Sense

Extract Resistance

ΘÌ

Ø

Conni Conn2 LI

m

LZ

Measured Resistance

m

LZ

Force-

Sense

Ø

28 August 2023

MLY

JI

ε

Channel Resistance Stack-Up

Channel Resistance Stack-Up

I6 nodes, 50 meters total

- 23g cable
- 65C cable temperature
- 85C node (connector) temperature
- ▶ 15 Cable sections (23g @ 65C)
 - Rcable = 50meters * 175.6mΩ = 8.78Ω
- ▶ 15 T-Connectors worth of resistance (@ 85C)
 - TC1 of connector 1 carries no current
 - TC2 of connector 16 carries no current
 - Rconns = 15 * 58mΩ = 880mΩ
 - Rcomp = 15 * 335mΩ = 5.31Ω
- ⊳ Rchan,max = 15Ω
 - Rcable + Rconns + Rcomp = 14.98Ω

Mixing Segment, Gauge / Resistance / Length

Gauge	Resistivity @ 65C (mΩ / m)	Length (8.78Ω)
24	221.4	39.6
23	175.6	50.0
22	139.2	63.1
20	75.6	111
18	41.8	178

- ► If cable gauge changes, change system length
- Channel Resistance calculated for 16 nodes w/ cable and t-connectors
 - \blacktriangleright 8.78 Ω allocated to total cable resistance (15-segments)
- Connector Resistance Remains Constant
 - Maximum 413m Ω / Node between TC1 and TC2
 - ► 6.2Ω total allocated to T-Connectors

Signal Attenuation vs. Gauge and Length

Insertion Loss Comparison, 23g@50m vs 18g@178m

Gauge	Length	Node 16 RX Delay
23g	50m	340ns
18g	178m	829ns

Thank You

