IEEE 802.3da SPMD TF: 10BASE-T1S multidrop Low-Power Wake Proposal

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Tim Baggett 12 September 2023

Previously on "Multidrop Energy Saving"

• July 2023 – Berlin

- Introduced the low-power wakeup mechanism specified by OPEN Alliance for 10BASE-T1S
- Provided initial baseline text based on the
- Intention was to use it to emulate EEE for Multidrop

A new direction...

- Initial thought was OPEN Alliance Wake/Sleep specification could be used to plug into Clause 78 EEE, but there are issues...
 - EEE can bring the link back up FAST
 - Waking a full mixing segment from a low-power state is much slower
 - Must wait for other devices to stop transmitting, or
 - Wait for PLCA Transmit Opportunity
 - Unique to multidrop; Point-to-point topology has it easier
- Rather than plug into EEE, let's instead define it as a new power management client and mechanism for mixing segment lowpower wake-up

Summary

- The system may not need all nodes on the mixing segment to be always active
- OPEN Alliance goal was that devices not needed are put in a minimal power state
- OPEN Alliance solution:
 - Application layer determines when devices go to low-power state
 - Generation of wake/sleep requests is out of scope
 - Specify a global wake mechanism to exit low-power state
 - All nodes on the mixing segment wake up
 - No selective wake; wake isn't addressable
 - Nodes in low-power state must not be falsely awakened by normal DME traffic from active nodes
 - Use of out-of-band signaling implemented with only passive analog circuits
 - VERY low power Target <120 μ W

Wake-Up Tone (WUT)

- Partial Networking on a Mixing-Segment (Beruto, 20/1/2020)
 - There's a sweet spot in the frequency range between 500 KHz and 1 MHz where a signal could be distinguished (by analog means) from the DME (Differential Manchester Encoding) which is used for normal 10BASE T1S data.
 - This could be used for the wakeup signal!

• WUT defined as 12 periods (19.2us) of 625 kHz tone

- Decade lower than lowest DME fundamental (all zeros, 6.25MHz)
- Detectable by simple low-power analog circuitry

Interoperability with Active Nodes

- Transmitting the WUT shall NOT disrupt traffic of active nodes
- The WUT <u>must</u> be compatible with PLCA and CSMA/CD

PLCA: Send the wake-up signal during node's TO

- But the 625kHz WUT will <u>not</u> assert a carrier sense
 - WUT would collide with active nodes
- We must create a period of silence on the mixing segment in which to transmit the WUT so it is always detectable by nodes in the lowpower state
 - Without causing collisions in PLCA
 - Allowing only <u>initial</u> collisions in CSMA/CD

SUSPEND coding

- Six DME encoded 'T' symbols are sent by the PHY prior to WUT
 - Will be detected as carrier
 - Makes both PLCA and CSMA/CD nodes enter a receive state
 - Special symbol encoding to suspend the PLCA state machine, holds present TO despite carrier sense going low during WUT
- PCS detects receives 'TT' as a SUSPEND receive command
 - Similar to BEACON (NN), COMMIT (JJ), and start of frame (JJHH)

SUSPEND coding and PLCA

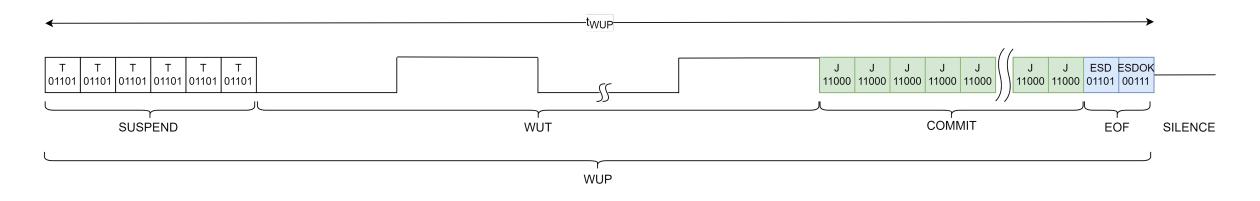
- PLCA RS receives SUSPEND and "pauses" the TO Timer
 - Control state diagram will enter the RESYNC state will not transmit
 - Data state diagram will accept transmit data from the MAC placing it in the PLCA delay line
 - If filled, will generate a normal PLCA logical collision to the MAC
- PLCA will remain paused until expiration of a "resume timer" when it will continue with the TO where it left off
 - Wake-up sequence will not cause excess delay to high TO devices

SUSPEND coding and CSMA/CD

- The SUSPEND signaling on the wire will assert carrier sense causing CSMA/CD MAC to defer
- There is a small window in which a device may collide with the SUSPEND
 - WUT is specified sufficiently long enough for the device to collide and JAM, with enough remaining WUT being transmitted "in the clear" to still be detected by all low-power devices

SUSPEND coding

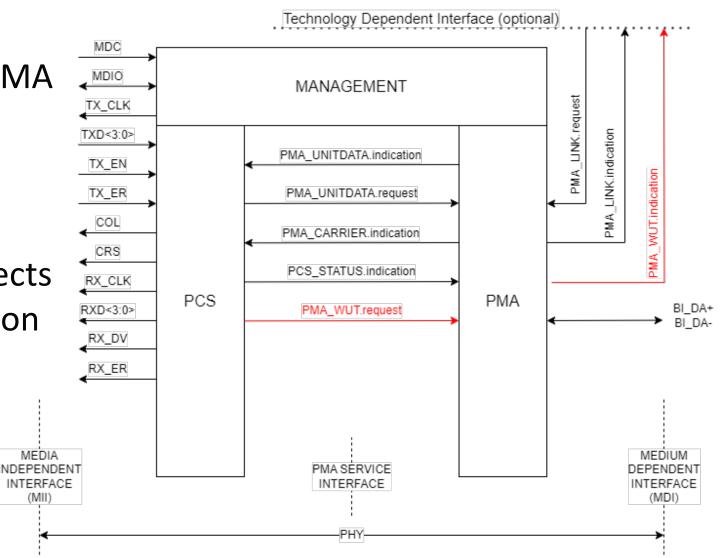
- Why the 'T' symbol?
 - Maximize auto-correlation properties for detection
 - Minimize cross-correlation with existing coding (BEACON, COMMIT, and start-of-frame 'JJHH')
 - Currently used as the End-of-Stream Delimiter (ESD) but can be reused


Closing out the WUT

- After the WUT is sent, a period of COMMIT 'J' symbols are sent
- Clause 147 PCS always ends COMMIT followed by ESD/ESDOK
- This sequence asserts carrier sense on all nodes again and resynchronizes PLCA

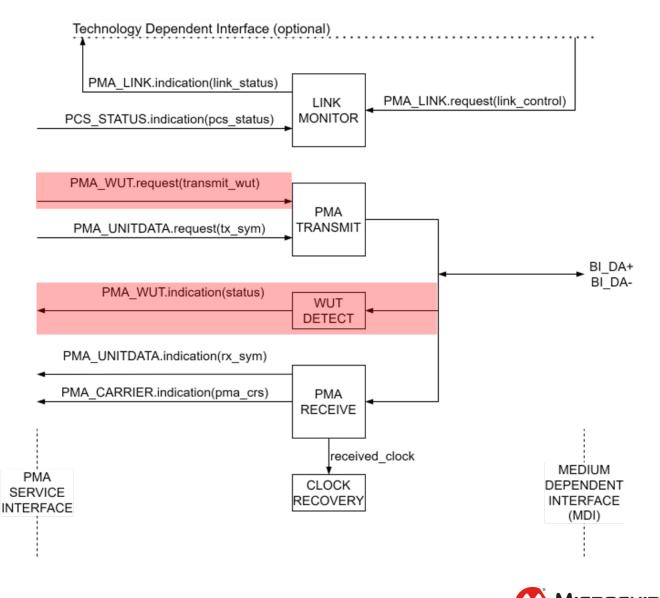
WUP – Wake-Up Pulse

- Therefore, the full 32.4 μs Wake-Up Pulse (WUP) sent consists of the following:
 - SUSPEND 6 DME encoded 'T' symbols
 - 12 periods of 625 kHz Wake-Up Tone (WUT)
 - COMMIT 25 DME encoded 'J' symbols
 - DME encoded ESD, ESDOK



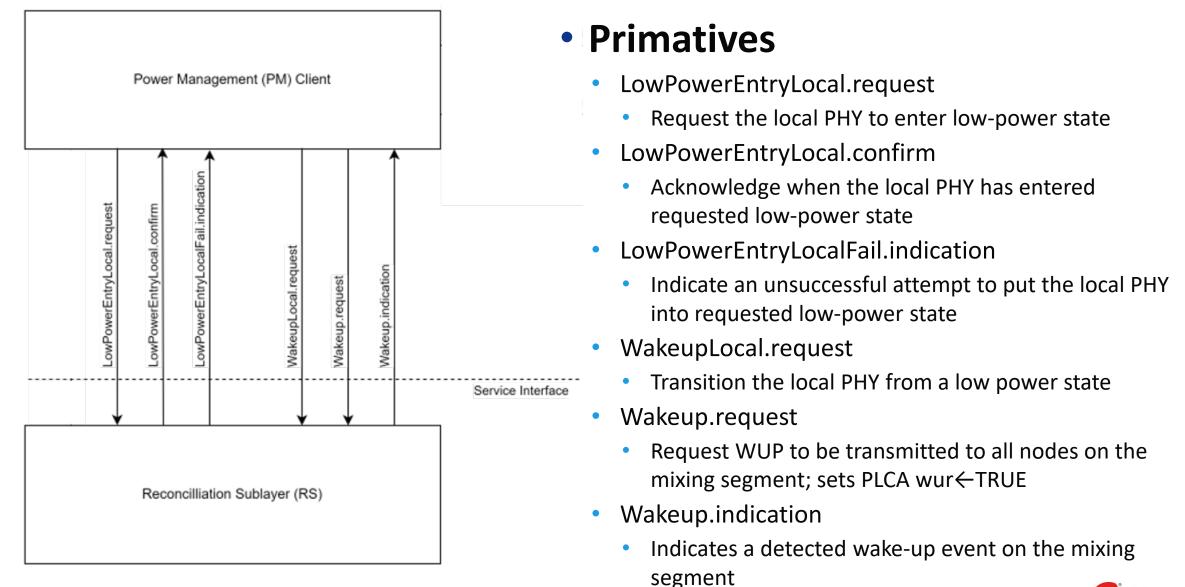
New PMA WUT request/indication

PMA_WUT.request


- When asserted, causes the PMA to transmit 625kHz WUT
- PMA_WUT.indication
 - Asserted when the PMA detects a WUT causing implementation to exit low-power state

PMA Architectural Changes

- Clause 147 PMA changes to support WUT transmission request and detection indication
 - The WUT DETECT block always powered in the low-power state
 - The PMA TRANSMIT block definition is updated for 625kHz tone transmit capability


15

New Power Management Client

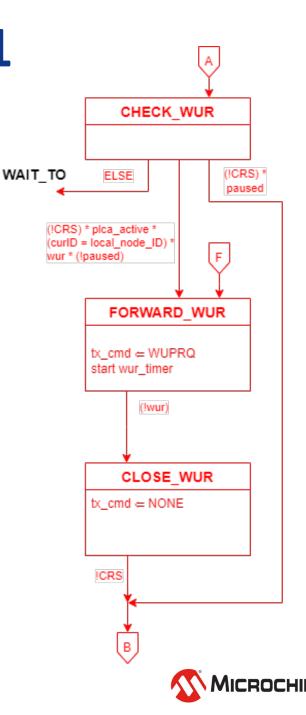
- Enables power savings during periods when one or more nodes on the mixing segment are not required to be active.
- Communication of PM Client to upper application layers is implementation specific
 - Defined as generic request/indication signals
 - However, a few Clause 30 PM Actions/Attributes are proposed
- PM Client communicates to the PHY through the PLCA RS in Clause 148
- "Low-Power" definition is *implementation dependent*

Optional Power Management Client

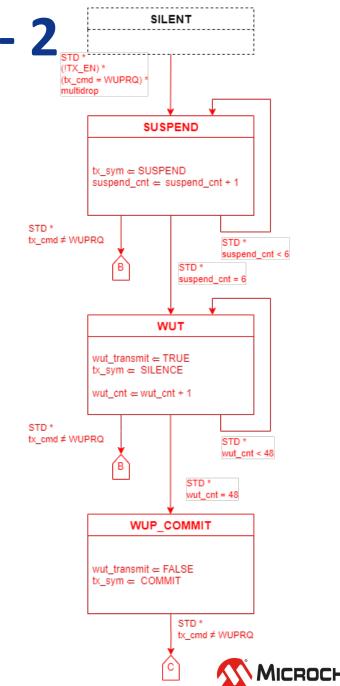
Clause 22 changes

- The following changes are needed to allow Power Management control between the PLCA RS and the PHY
 - MII Transmit Data Request PHY Transmit Wake-Up

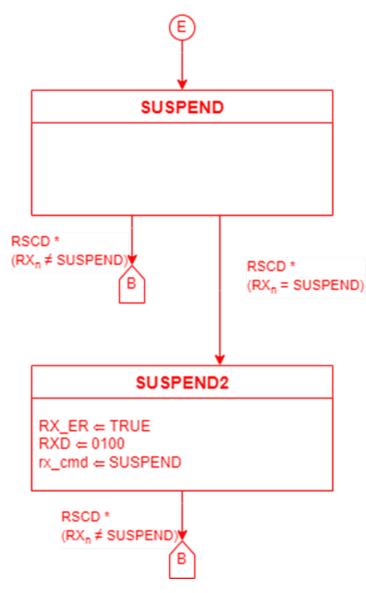
TX_EN	TX_ER	TXD<3:0>	Indication
•••			
0	1	0100	WakeUp Request (WUR)
0	1	0100 0101 through 1111	Reserved


• MII Receive Data – Received SUSPEND from PHY

RX_DV	RX_ER	RXD<3:0>	Indication
•••			
0	1	0100	SUSPEND indication
0	1	0100 0101 through 1111	Reserved

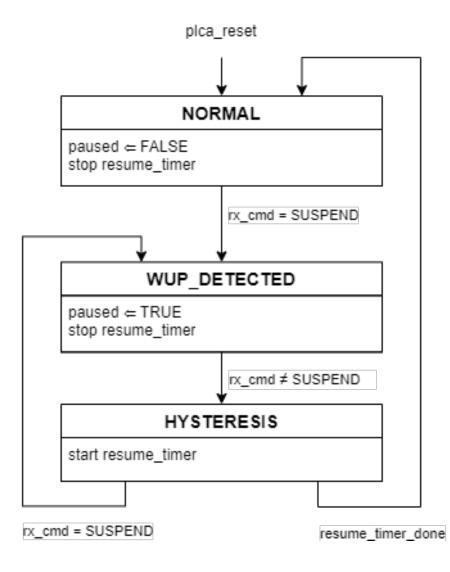

Causing a Wakeup on the network - 1

- When the PM Client needs to send a wakeup to the segment:
 - Asserts Wakeup.Request to the PLCA RS setting the PLCA wur=TRUE
 - PLCA RS then sends a WUP Request (WUPRQ) to PHY via new MII encoding

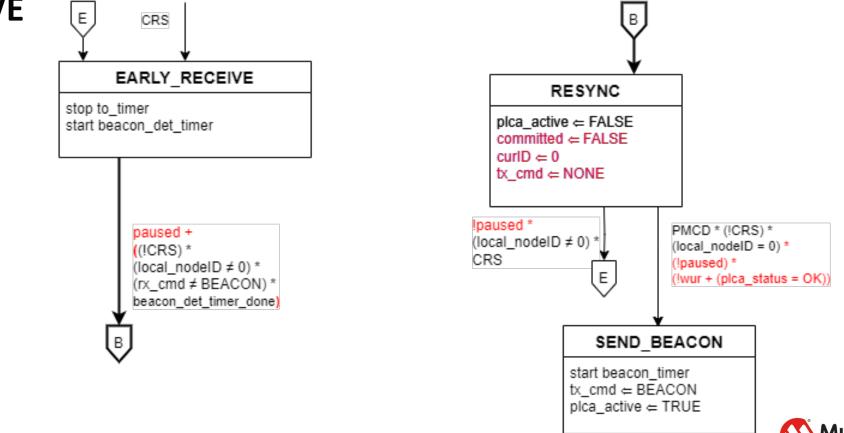

Causing a Wakeup on the network - 2

- When the PHY receives tx_cmd=WUPRQ from MII, PCS transmits:
 - SUSPEND symbols
 - - Causes PMA to transmit 625kHz tone
 - Transmits COMMIT symbols until tx_cmd!=WUPRQ
 - Finalizes with ESD/ESDOK

Receiving a SUSPEND from the network - 1


• When the PCS receives two SUSPEND symbols, it drives a SUSPEND indication on MII to the PLCA RS

Receiving a SUSPEND from the network - 2


- PLCA receives rx_cmd=SUSPEND
- Sets PLCA paused←TRUE
- PLCA remains paused for duration of WUP (resume_timer)

Receiving a SUSPEND from the network - 3

- With PLCA paused=TRUE, control state diagram transitions into RESYNC and stays until !paused
- When !paused, return to normal PLCA operation through SEND_BEACON or EARLY_RECEIVE
 Image: CRS

Thank You!

References

10BASE-T1S multidrop EEE proposal

10BASE-T1S multidrop EEE proposal (Baggett, 12/6/2023)

• IEEE P802.3da Objectives

7. Specify improvements for Energy Efficient Ethernet compared to current 10Mb/s multidrop single balanced pair networks

Partial Networking on a Mixing-Segment (Beruto, 20/1/2020) Thoughts on Energy Efficient Multidrop Systems (Zimmerman, 30/6/2021)

