Power System Parameter Examples

Michael Paul

32 nodes, Rconn $=300 \mathrm{~m} \Omega$, Pnode $=600 \mathrm{~mW}$, 22AWG Cable @ 65C, 100meters

- Relationship between T-connector resistance and Cable resistance is not intuitive
-Closed form equation for multi-drop power might not exist
- Simplified calculations are very pessimistic
-Use spice to converge on solution
- Spice will not converge if Barkhausen criterion is not met
- Need margin above Barkhausen criterion

Powering Trade-off

\triangleright Icable $=$
$\underline{\text { Vpse }+\sqrt{\text { Vpse }^{2}-4 * \text { Rpath } * \text { Pnode } * \text { Nnodes }}}$
$2 *$ Rpath
$->500 \mathrm{~mW} /$ node required

- Need enough power to start comms + small extra for simple sensors
- Trade off
- PSE Voltage | Rpath | Node Count

Parameter Priorities

-Priorities for the following examples

- 100m cables
- Decent node counts w/ AWG22
- Match traditional Ethernet for consistency
- Smallest possible diameter (e.g. AWG22)
- Maximize Node Count
- >500mW Node
- System Efficiency > 65\%

Node Model

- Rconn is divided by 4 in each node
- Represents contact resistance
- Compensator Resistance
- Etc.
- Rconn=300m@
- $<75 \mathrm{~m} \Omega$ per contact
- Need connector expert to validate this assumption

16 nodes, Rconn $=300 \mathrm{~m}$, , Pnode $=600 \mathrm{~mW}$, 22AWG Cable @ 65C, 100meters

- Stepping Vpse from 26 V to 20 V by 1 V
- System stops converging at 22V
- 23 V system is getting too close to instability

Searching For Gauge

16 nodes, Rconn $=300 \mathrm{~m} \Omega$, Pnode $=500 \mathrm{~mW}$, 100meters
-Set Vpse,min = 24V
-Searching AWG 18, 20, 22, and 24
AWG 24 did not converge

Searching for Max Delivered Power

16 nodes, Rconn $=300 \mathrm{~m} \Omega, 22$ AWG Cable @ 65C, 100meters, Vpse=24V
-Choose AWG 22 from last slide

- Search for power delivery > 500mW per node
-Can deliver 600mW @ 100m from 24 V while meeting stability

Example 24V Setups

Parameter	Setup 1	Setup 2	Setup 3	Setup 4	units
Vpse,min	24	$\mathbf{2 2}$	$\mathbf{2 1}$	$\mathbf{2 0}$	V
\#Nodes	16	16	16	16	Nodes
Power / Node	600	$\mathbf{5 0 0}$	500	600	mW
Cable Gauge	22	$\mathbf{2 2}$	22	$\mathbf{2 0}$	AWG
Connector Resistance	0.3	0.3	$\mathbf{0 . 1 5}$	$\mathbf{0 . 3}$	Ω
Length	100	100	100	100	m
Efficiency	66.5%	66.9%	65.4%	67.7%	$\mathrm{~V} / \mathrm{V}$

Bold text shows differences from previous setups

50V System Example

32 nodes, Rconn = 300m@, 22AWG Cable @ 65C, 100meters, Vpse=50V

- Start with 24V system "Setup1"
-Change to Vpse_min = 50V
-Changed \#Nodes to 32
- 1 PSE, 31PDs
-Can deliver up to 1.1W / Node
- Ampacity of AWG 22 not high enough?
- Most conservative solution is to match 600 mW solution from the 24 V system

Example 50V Setup

Parameter	Setup 5	Setup6	Units
Vpse,min	50	50	V
\#Nodes	32	32	Nodes
Power / Node	600	600	mW
Cable Gauge	22	$\mathbf{2 4}$	AWG
Connector Resistance	0.3	0.3	Ω
Length	100	$\mathbf{1 0 0 m}$	m
Efficiency	85.4%	$\mathbf{7 4 \%}$	$\mathrm{~V} / \mathrm{V}$

Bold text shows differences from previous setups

Proposed Power Systems

Parameter	24V System	$\mathbf{5 0 V}$ System	Units
Vpse,max	30	$\mathbf{6 0}$	V
Vpse,min	24	$\mathbf{5 0}$	V
Ipse	550 mA	$\mathbf{4 2 8 m A}$	V
llimit	Ipse * 1.2	Ipse *1.2	V
\#Nodes	16	$\mathbf{3 2}$	Nodes
Power / Node	600	600	mW
Cable Gauge	22	22	AWG
Connector Resistance	0.3	0.3	$\mathrm{\Omega}$
Length	100 m	100 m	m
Efficiency	66.5%	$\mathbf{8 5 . 4} \%$	$\mathrm{~V} / \mathrm{V}$

Bold text shows differences between the two systems

- Power System has several degrees of freedom that are interrelated
-802.3da needs to narrow the limits to progress in power design
- Two Voltage classes are proposed for 802.3da powered systems
- Is connector resistance estimation reasonable?

