IEEE 802.3da – EMC noise margin Piergiorgio Beruto

IEEE 802.3 - Public Information

Outline

- Follow-up discussion on consensus model definition
 - TX model:
 - https://www.ieee802.org/3/da/public/050422/beruto_3da_20220502_tx_model.pdf
 - RX model:
 - https://www.ieee802.org/3/da/public/0722/beruto_3da_20220711_rx_model.pdf
 - Integration of TX/RX with consensus model from Michael Paul
 - https://www.ieee802.org/3/da/public/0922/paul_02_da_09142022.pdf
 - Integration of TX/RX with channel model from Chris Di Minico
 - https://www.ieee802.org/3/da/public/0922/diminico_SPMD_01_09142022.pdf
 - https://www.ieee802.org/3/da/public/1122/diminico_SPMD_01_1122.pdf [1]
- Results shown in [1] indicate that there is little margin for EMC immunity on the presented link segment (75 mt, 30 nodes w/ and w/o compensation)
 - How to deal with this?

Problem Statement

Starting point: simulations

Data collected from

https://www.ieee802.org/3/da/public/1122/diminico_SPMD_01_1122.pdf

Model	Max CWA at CORR > 0.65
75 m, 30 node, uncompensated, Min TX	100 mV _{p-p}
75 m, 30 node, uncompensated, Typical TX	150 mV _{p-p}
75 m, 30 node, compensated, Min TX	150 mV _{p-p}
75 m, 30 node, compensated, Typical TX	300 mV _{p-p}

CWA (V)	CORR_AVG	CORR_MAX	CORR_MIN	JITTER (ns)	JITTER_MAX (ns
0	0.975174	1	0.8875	1.964992	6
0.05	0.973562	1	0.8625	2.03217	7
0.1	0.969372	1	0.825	2.241924	9
0.15	0.963706	1	0.775	2.545944	11
0.2	0.956932	1	0.75	2.935691	13
0.25	0.949302	1	0.7	3.388988	16
0.3	0.941119	1	0.65	3.902001	19
0.35	0.932468	1	0.55	4.465008	24
0.4	0.923128	1	0.4875	5.143244	39
0.45	0.913067	1	0.4625	6.092328	39

10 Mb/s SPMD Enhancement TG

IEEE 802.3 - Public Information

Noise environment

- Are these levels acceptable for industrial use cases?
- As shown in slide 8 of

https://www.ieee802.org/3/da/public/0722/beruto_3da_20220711_noise_env.pdf

- IEC61000-4-6 (Immunity to conducted disturbances, induced by radio-frequency fields) can be used as a baseline for defining the noise environment
- Class 3 immunity level defines 10 $V_{\rm rms}$ of common-mode continuous wave (CW) noise coupled to the data lines
 - Calibrated, regardless of the coupling method (clamps or CDN)
 - Ranges from 150 kHz to (at least) 80 MHz with 1% step increment
 - Further modulated by 80% amplitude at 1 kHz
- How common-mode noise affects the PHY's immunity?
 - 1. The PHY shall tolerate the noise without clamping the voltage on the line
 - even when powered off!
 - 2. Part of the common mode voltage is converted to differential mode!

Problem statement - Mode Conversion Loss

- The conversion is symmetrical DM \rightarrow CM (emission) or CM \rightarrow DM (immunity)
- Just a change in sign!

Onsemi

MC limits

- 802.3cg Clause 147 adopted the MC definition from Clause 96
 - re-use of typical 100BASE-T1 cables (UTP) for automotive (~ AWG 26)
 - 43 dB in-band (1 MHz to 20 MHz)
- Doing the math:
 - 10 V_{rms} calibrated at the MDI + 80% modulation
 - Considering 43 dB of MC loss (TCTL)
 - Taking some margin for tolerances/non-idealities

 \rightarrow 51 V_{p-p} (max, CM)

- \rightarrow 360 mV_{p-p} (max, DM)
- \rightarrow 400 mV_{p-p} (max, DM)
- This exceeds even the best-case margin shown by simulations in https://www.ieee802.org/3/da/public/1122/diminico_SPMD_01_1122.pdf

Model	Max CWA at CORR > 0.65	
75 m, 30 node, uncompensated, Min TX	100 mV _{p-p}	-12 dB SNR !
75 m, 30 node, compensated, Typical TX	300 mV _{p-p}	-2.5 dB SNR !

onsemi

Potential Solutions

1. Further constrain the PSD

• There is a significant difference between the results obtained with the "typical PSD" transmitter model and the "Minimum compliant PSD" transmitter model

- about 5 dB difference in SNR

1. Further constrain the PSD

• There is a significant difference between the results obtained with the "typical PSD" transmitter model and the "Minimum compliant PSD" transmitter model

- about 5 dB difference in SNR

2. Increase the TX level

• Increasing the TX level to 2.4 V_{p-p} yields ~ 7.6 dB of SNR

CWA	CORR_AVG	CORR_MAX	CORR_MIN	JITTER	JITTER_MAX
0.1	0.974432	1	0.8625	2.003142	7
0.2	0.971493	1	0.825	2.144271	8
0.3	0.967244	1	0.8	2.368208	9
0.4	0.96227	1	0.775	2.64529	11
0.5	0.956381	1	0.7375	2.99016	13

30 nodes, 75 m, compensated typ. TX

CWA	CORR_AVG	CORR_MAX	CORR_MIN	JITTER	JITTER_MAX
0.1	0.960001	1	0.775	2.029582	7
0.2	0.957892	1	0.7375	2.194503	8
0.3	0.95476	1	0.6875	2.451864	10
0.4	0.950683	1	0.6375	2.777494	11
0.5	0.945519	1	0.5375	3.162871	14

30 nodes, 75 m, uncompensated typ. TX

2. Increase the TX level

- Implications of increasing the TX level:
 - cross-talk to be re-evaluated, in principle
 - although, 10BASE-T1L has an option for 2.4 V already (not for intrinsic safety)
 - How to negotiate this option? There is no AN defined for multi-drop...
 - Could be a static setting / mandated for all 802.3da compliant PHYs
 - What about compatibility with 802.3cg?
 - May not be an issue as 802.3cg PHYs should tolerate a much higher differential signal, again because of EMC requirements

2. Increase the TX level

Other implications

- A higher TX voltage would adversely affect EME (emissions)
- However, 10BASE-T1S was mainly designed for meeting automotive requirements
- Can we tolerate more emissions for building/industrial automation?
 - According to my experience \rightarrow yes
- The relative cost of the PHY would increase
- The power consumption would increase significantly

3. Define a better MC for the 10BASE-T1M channel

- Can we afford cabling / connectors with better MC than what is defined for 100BASE-T1?
- Ideally, we need to be at least 12 dB better (without changing the PSD)
 - But the final solution could be a mix of PSD / MC changes
- Use of shielded cables could be a solution, but expensive (and typically undesired because of installation complexity)
- QUESTION for cables/connectors manufacturers:
 - What can we reasonably mandate as minimum MC?

Conclusions

- According to the simulations presented in <u>https://www.ieee802.org/3/da/public/1122/diminico_SPMD_01_1122.pdf</u>, we are missing at least 12 dB of SNR margin from the **worst-case** scenario (minimum compliant TX mode, no inline inductors compensation) to achieve IEC61000-4-6 class 3 conducted immunity requirements
- Changing the TX PSD is a potential solution
 - increases emissions and the PHY relative cost / power consumption
- Increasing the MC requirement for the harness is also a potential solution
 - Cables for industrial/building automation could be better than 100BASE-T1?
 - what's the trade/off between costs and performance?
 - What can reasonably be achieved?
- We need an additional requirement to prevent PHYs from clamping the voltage on the shared medium, affecting the ability of other nodes to communicate

Onsemi

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com