

802.3da Power Decision Tree

Heath Stewart, Analog Devices Inc. Michael Paul, Analog Devices Inc.

Define Terminology

- Present Power Specification Decision Tree
- ► Propose Decision Tree Results

End Markets and How (and If) to Specify Them

Room Segments

- Technician installed
- Strings (segments) of PDs spread out at moderate density
 - e.g. 10 PDs per 10m²
- Organic constitution and construction
- Strict cabling and topology rules
 - E.g. 100m total length
 - 18AWG cabling
 - Defined connector
 - Defined minimum PD-to-PD spacing

Chassis Segments

- Planned installations
- Strings of PDs spread out at high density
- Shorter total segment length, e.g. 10m
- Custom cabling, connectors
- Can use standard ICs

Question: Should chassis requirements effect all 802.3da requirements or a subset?

- In-Out Connection Shown
- T-connector can be envisioned
- Power and data flow through PD
- PSE Power Coupling Network (PCN) carries full current

- Compensation network not shown (if needed)
- ► R-through-PD = $R_{Conn} * 2$
- ► No PCN inductor loss in through-path
- ▶ PD PCN Inductors sized to PD application

In-Out Connection

- Ensures drop length is controlled
- Adding a PD to the end of the segment is a seamless hot-add
- Adding a PD to the middle of the segment will bring down all downstream PDs for the duration of the reconfiguration event
- Only two interfaces require specification
 - PD-In, PD-Out

- ► Tee Connection
 - Drop length is non-deterministic
 - Hot-adds can be accomplished at any preinstalled T
 - Addition of a new T brings down the network, just like In-Out
 - Four interfaces require specification
 - T-In, T-Out, T-Node, PD-Node

Primary Multi-drop Power/Data Secondary Multi-drop Power

- Same Power/Data topology on Primary pair
 - Top pair, Green-White
- Additional power bus on Secondary pair
 - Bottom pair, Red-Black

- Secondary power attributes are out of scope for 802.3da
- We can and should consider adding LLDP telemetry, control, and power management to the Secondary power bus

- In-Out Connection Shown
- T-connector can be envisioned
- Power and data flow through PD
- PSE Power Coupling Network (PCN) carries full current

- Compensation network not shown (if needed)
- ► R-through-PD = $R_{Conn} * 2$
- ► No PCN inductor loss in through-path
- ▶ PD PCN Inductors sized to PD application

Data&Powervs Power-Only Requirements Map

Modern PoE switches typically have power managed allocations

- Meaning a 48 port 802.3at 30W switch does not have a 48 * 30 = 1.44kW supply
- Rather ports are powered until power budget is exhausted
- Once exhausted ports will no longer be powered
- Typically a visually indication is provided
- In addition a network management plane will allow inspection of port power allocations

A multi-drop PoE segment can have up to 31 PDs

Example 1

- PD #1 is granted the entire PSE power allocation
- Any future hot add will bring down the link

► Example 2

- PD #1 is granted almost the entire PSE power budget
- PSE reserves
 - num_unpowered_pds * min_pd_allocation
- Outcome is that PDs requiring more than min_pd_allocation will not be able to perform their function

In a fixed PD power allocation scheme each PD will be granted equal and invariant power allocation

• $fixed_pd_allocation = \frac{(pse_power - cable_loss)}{pd_allocation}$

max num pds

- Each PD is granted enough power for
 - PHY
 - MAC
 - Microprocessor
 - Simple IoT functions
 - e.g. 0.5W
- ▶ At 54V fixed power grant can be higher e.g. 2W
- Higher power requirements are incompatible with a high node count power sharing paradigm
- \triangleright PDs requiring significant power (>2W) can utilize local mains or the secondary power bus

Telemetry

Symmetric PSE/PD Telemetry Requirements

- Multi-drop systems rely on collaboration and compliance
- ► I_{PSE} = SUM(I_{PD[0..n]})
- Security via telemetry
 - Operational states can be spoofed
 - Power states cannot be easily spoofed
- Note: PSE and PD current measurement accuracy limit utility

Example

- ► 54V System
- IO PDs connected and powered
 - All report I_{PD[0..n]} = 30mA ±5% (each)
 - SUM(I_{PD[0..n]}) = 300mA
 - I malicious PD is actually drawing 80mA
- Are all PDs in their reported power states?
- PSE reports I_{PSE} = 350mA ±3%
- ► I_{PSE} != SUM(I_{PD[0..n]})
- Conclusion
 - One or more PDs is in an illegal state

- Midspans allow power to be added to a network retroactively
- Midspans do not have data access
- Power debug of a Midspan-based segment is not possible
- Midspans will have non-deterministic effects on signal integrity
 - Power coupling network is not co-located with PHY

- Propose: Midspans are left out of scope
- Propose: PSE are required to provide Voltage, Current and Power telemetry
- Propose: PDs are required to provide Voltage, Current and Power telemetry

Power Attributes

Power Secondary

Out of Scope

Basic Classification

Axioms

- Multi-drop links are communities
- Members must behave
- Identifying and eliminating bad actors culminates in working networks

Option 1: Always hot with limited current/voltage

- No segment debug assistance
- Not best-effort nor state-of-the-art

Option 2: Basic detection

- Is at least one valid 802.3da PD present?
- Allows power to be applied only when a valid PD is present
 - Not short
 - Not completely open
 - Difficult to support deterministically with parallel PDs

Option 3: Perform classification

- Simple "vote"
 - 802.3da 24V PD(s) present?
 - 802.3da 54V PD(s) present?
 - 802.3da Hybrid 24V/54V PD(s) present?
- Creation of multiple voltage classes pragmatically mandates classification discovery

Consider

- Segment populated with
 - (30)54V PDs, (1)24V PD
- PSE preforms classification
- PSE reports "Illegal device mix"
- IT department opens ticket

► See <u>paul_01_da_051921</u>

- (not exclusive) At least one 24V PD present
- Inot exclusive) At least one 54V PD present
- (not exclusive) At least one 24/54V PD present
- (exclusive) Open
- (exclusive) Short
- (exclusive) Classification error

- Proposed minimum PD power allocations have been as low as 0.5W
- ▶ At 54V, 0.5W, PD Current is 9.25mA
- If a single PD is populated it is very difficult to differentiate a single PD in standby mode from an open circuit
- Example: If all PDs must draw 5mA, 31 PDs would consume
 - 31*5mA*54V = 8.4W

Propose

- PDs can draw 0 mA sleep current
- Data link queries PD presence periodically
- Packet or LOS signaling
- If zero PDs respond in "query" interval
 - Remove power

Discussion

Does 802.3da support PHY-based open-circuit detection?

Power Handling and Tolerance

Торіс	Sub-topic	
Voltage Tolerance		Given the multi-drop, hot add paradigm: Propose all PDs must tolerate 60V and I _{PSE} indefinitely
Voltage Passthrough	Direct Connect In-Out & T	(Avoiding compensation circuit discussion as orthogonal to power discussion) Propose Direct Connect is lowest relative power loss and lowest relative cost
	Buck-Boost Requirement	Buck-boost stage invokes ~10% power loss Propose avoid requirements leading to node buck-boost
	Power Coupling In-out	Power coupling in-out invokes 100s of m0hm of IR drop and significant relative cost disadvantage Propose no power coupling in through-path

Power Handling and Tolerance, Continued

Торіс	Sub-topic	
Polarity Protection		Mis-wiring can occur. A simple polarity swap should not damage equipment. Propose PDs are non-functional but tolerant-to polarity swap
Polarity Rectification		Relative cost of polarity rectification is high. This feature offers limited real-world benefit (see "Polarity Rectification"). Propose No polarity rectification requirement.
Surge		Propose Mimic Clause 145
Isolation		Propose Mimic Clause 145

LLDP Features – Hide for now

- Data related discussions describe the number of nodes as N
- For power related discussions power network performance is a function of the number of PD nodes
 - Data nodes = N
 - PSE node = 1
 - PD nodes = N-1