IEEE 802.3da SPMD TF: Multidrop Low-Power Status Update

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Tim Baggett, Mary Sue Haydt 13 November 2023

Previously on "Multidrop Energy Saving"

September 2023 – Campinas

- Provides details of proposed wake-up signaling
- Concerns in detection of 625kHz tone due to MPoE inductive loading
- Do not specify "low power" implementation dependent
 - Device can still conform even if it isn't supported
- Currently, this is really "turn off" / "turn on"
 - "Turn off" is an upper layer feature (out of scope)
 - Defining a mechanism to "turn on" the full segment

Today we look at the concerns of MPoE inductive loading and detection of 625 kHz signaling

Why 625 kHz?

100nF coupling caps provide minimal attenuation above ~250kHz

As shown by Wojciech Koczwara – 08 Sept 2023 - Campinas S21(transmitter to right-hand terminator) – Zoom In

At 625kHz, around 4dB loss can be expected (needs confirmation with real cable and topologies)

Why 625 kHz?

Below the DME data power spectrum

- Higher and we must contend with noise from data
- Separation allows for filtering
- Below immunity requirements
 - Would have issues >1Mhz
- Detectable using low-power analog methods

Effects of MPOE on 625kHz signaling

- Inductance yields distortion of the received 625kHz square wave
 - Our model results compare to those of M. Paul and W. Koczwara

- But there is still energy at 625kHz
 - Is it enough?

Model Implementation

- Typical detectors would likely implement an input filter
 - Second order low-pass, cutoff at 625kHz filter out DME and noise
 - Creates a band-pass filter when combined with high-pass of 100nF caps

Effect of low-pass filter at wake detector input

DME Data

- Low pass filter attenuates BEACON DME signaling amplitude by -40dB
 - Red filter input 1.1V_{pp}
 - Blue filter output $8mV_{pp}$

Note: scale change

Effect of low-pass filter at wake detector input

MPoE Received 625kHz signal

- Received input to the LPF in red
- Filtered input to the detector in blue
 - Still 200mV_{pp}

• This is easily detectable, but what about noise tolerance?

Next steps

- Continue work on model implementations
- Will this meet noise tolerance requirements?
 - What are the requirements?
 - What noise may be added due to MPoE and other sources?
 - Higher order low-pass filter?
 - High Q bandpass filter?
- Transmit 625kHz at higher amplitude? (pre-emphasis)
- Do we really need 320µH?
 - Might be able to do with less and still get reliable detection.
 - Needs work testing!

Paths Forward

- Restrict to only non-MPoE Clause 147 10BASE-T1S
- Make it work with MPOE
 - Appears feasible, still performing work
- Create a new in-band wake
 - "not so low" power (mA)
- Others?

Conclusions

- Continue exploring the 625kHz tone feasibility for 10BASE-T1M MPoE applications
- Don't block reaching Draft 1.0 working group ballot

Thank You!

Acknowledgements

- The technical analysis in this presentation was performed by
 - Fatma Fruehling (Caliskan) and
 - Galin Ivanov

References

10BASE-T1S multidrop EEE proposal

10BASE-T1S multidrop EEE proposal (Baggett, 12/7/2023)

• 10BASE-T1S multidrop Low-Power Wake Proposal

10BASE-T1S multidrop Low-Power Wake Proposal (Baggett, 12/9/2023)

• Multi-drop wake-up signaling challenges with MPoE

Multi-drop wake-up signaling challenges with MPoE (Koczwara, 12/9/2023)

