
March 1, 20021

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e Loop Aggregation Baseline

Klaus Fosmark
FirstMile Systems
klaus@firstmilesystems.com

Summary of Agreed Issues

March, 2002

March 1, 20022

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

What is Loop Aggregation?
Meets objective: “Include an optional specification for combined
operation on multiple copper pairs”
PHY Layer protocol for aggregation of up to 32 copper loops into
one logical Ethernet link
Independent of PMD layer flavor of DSL
Scalable and resilient to loop failures

MII MII

DSL

DSL

DSL

DSL

DSL

DSL

DSL

DSL

Copper Loop #1

Copper Loop #2

Copper Loop #3

Copper Loop #N

March 1, 20023

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Protocol stack

ITU Defined
Physical Layer

MII

MAC

PHY

Reconciliation/Rate Adaptation
Loop Aggregation

…γ-interface

PTM-TC
sublayer

ITU Defined
Physical Layer

PTM-TC
sublayer

ITU Defined
Physical Layer

PTM-TC
sublayer

…

α/β-interface

March 1, 20024

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Fragmentation & Reassembly

FRAGMENTATION LOOP PLANT

#1

#2

#3

#4

Loop #1: 2Mbps

Loop #2: 1Mbps

Loop #3: 1Mbps

Loop #4: 2Mbps

Et
he

rn
et

 F
ra

m
e

REASSEMBLY DATA
FRAME
RECEIVE0 tEH

EH

EH

EH

0 t

0 t

0 t

#1

#2

#3

#4

EH

EH

EH

EH

Et
he

rn
et

 F
ra

m
e

March 1, 20025

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

EFM Protocol Encapsulation

EFM Header (EH)
SeqNum - frame sequence number (10bit)
TotalFrag - # of other fragments that belongs to this Ethernet frame (5bit)
FragNum - fragment number (5bit)

Underlying PTM-TC sublayer (if applicable) provides
HDLC framing
0xFF 03 header (Could be used?)
CRC checksum (Some error protection is a requirement).

MAC dest MAC src T/L Data

CRC32

EH MAC dest MAC src T/L Data

EH Data

CRC32

Fragment 1

Fragment 2

Original Ethernet Frame

March 1, 20026

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Example

It does not matter which ports are connected to which, the protocol
header implicitly determines how they are to be reassembled

1024 bytes

Ethernet Frame

256 bytes 256 bytes512 bytes

1Mbps 1Mbps2Mbps

Fragment 1 Fragment 3Fragment 2EH EH EH

SeqNum=1
TotalFrag=2
FragNum=0

SeqNum=1
TotalFrag=2
FragNum=1

SeqNum=1
TotalFrag=2
FragNum=2

γ-interface

Fragment 1 Fragment 3Fragment 2EH EH EHCRC CRC CRC

March 1, 20027

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Fragmentation Procedure
Ethernet frame from MAC layer

Determine N, the number of currently functional loops (if some loops are
down, N will be smaller than the number of ports)
Slice up the frame into N fragments, each with a length according to line
rates
Add EFM Header to all N fragments
Set SeqNum to SeqNum+1 from last frame sent
Set TotalFrag to one less that the number of loops (N-1)
Set FragNum to indicate fragment number of each fragment (it does not
matter which fragment of the frame is sent on which loop)
Hold off transmission until no backpressure from any PTM-TCs, then
send all N fragments in parallel across the N loops
In PTM-TC sublayer, CRCs are calculated and inserted on all N loops

Loops

MII

March 1, 20028

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Reassembly Procedure
CRC is checked on each loop (PTM-TC)

if error, fragment is discarded

Original Ethernet frame is reassembled
Using FragNum, TotalFrag, and SeqNum in the EFM Headers

If a fragment is received with SeqNum out of sequence
the fragment is discarded

MII

Loops

March 1, 20029

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Resiliency
A transmitter can in real time determine which of the
connected loops are to be used (based on DSL link
failures or bit error levels)
The EFM header allows the fragmentation to only take
place on a subset of the connected loops. The EFM
header implicitly defines how many and which loops were
used.
The reassembly process can determine how many loops
were used on a packet by packet basis

March 1, 200210

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Issues
Depending on underlying packet encapsulation scheme:

If HDLC, fragmentation can optionally compensate for HDLC skew
(covered in backup slides)
If something else, some form of error protection on (at least) the EFM
header is a requirement

Number of supported loops
Consensus in Raleigh showed support for 32 loops. (Backup slide
addresses overhead with less loops).

Differential Latency supported
Size of SeqNum parameter, amount of (other) overhead in fragments,
and top speed of loops determine how large a differential latency can be
supported

March 1, 200211

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Backup Slides

March 1, 200212

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

How Many Loops?
Maximum number of loops that can be aggregated is implementation
specific, but we need to pick a protocol limit!
8-32 loops, what does it cost?

More loops means smaller payloads per loop. I.e. more relative overhead.
More loops mean more bits needed in EFM Header:
N <= 8 loops means 2 bytes EFM Header
8 < N <= 64 means 3 bytes EFM Header
N>32 should not be considered! (MDIO support)
No buffer cost (other than linear scale)

0

10

20

30

40

50

60

70

80

90

100

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of loops

Lo
op

 U
til

iz
at

io
n

Large packets
Small Packets

March 1, 200213

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

The “HDLC Skew” issue

ITU defined Packet Transfer Mode (PTM) defines use of byte
synchronous HDLC encapsulation
HDLC encapsulation makes the data stream longer than it was:

Data byte 0x7E is encoded as 0x7D-5E (two bytes)
Data byte 0x7D is encoded as 0x7D-5D (two bytes)

Skew is dependant on content of packets
Unless HDLC skew is compensated for, Loop Aggregation layer will
not know the real transmission rates
Can lead to lower loop utilization

γ-interface

HDLC
encapsulation

α/β-interface

HDLC
encapsulation

Loop
Aggregation

March 1, 200214

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

Packet Mux, Fragmentation Algorithm
Fragmentation algorithm can be vendor specific, does not
need to be defined in standard
Fragmentation algorithm can optionally compensate for
HDLC skew
Fragmentation algorithm does not need to be known at
receiver, it does not affect interoperability
The following are examples of possible algorithms that do
compensate for HDLC skew and are simple to implement

March 1, 200215

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

HDLC Skew Compensated Frag. Algorithm

Incremental calculation (only TX end)
One pointer parameter (x0, x1,…) per loop

Fr
am

e

e(x) = Frame[x] contains 7d or 7e

acc>=R0
yesno

e(x1) add
 no -R0
yes -2R0

e(x0) e(x1) add
 no no R1
 no yes R1-R0
yes no 2R1+R0
yes yes 2R1

x0 += 1 acc += add
x1+=1

Start

yes

More bytes
in packet?

x0-1 is last byte of
first fragment

no

Send on loop 0 Send on loop 1

7e
7d

7e

7e

7d

x0

x1

Data for
loop0

Data for
loop1

7d

Data
processed

Data to be
processed

March 1, 200216

Lo
op

 A
gg

re
ga

tio
n

Ba
se

lin
e

HDLC Skew Compensated Frag. Algorithm
Algorithm that works for N loops:

Initially, and each time a line rate changes:

where G is the least common multiple (LCM) of R[1], R[2],…R[N].
For every packet:

where the x’s are the intersection pointers

for i=1 to N do
C[i] = G/R[i]

Clear all A[i], x[i] , i = 1,2,,N
for each byte in the frame do
{

Find k where A[k] = min(A[i]) , i = 1,2,,N
for i=k to N do
{

if frame content in x[i] contains 0x7e or 0x7d
f=2

else
f=1

A[i] += f * C[i]
A[i+1] -= f * C[i+1], if i<N
x[i] += 1

}
}

