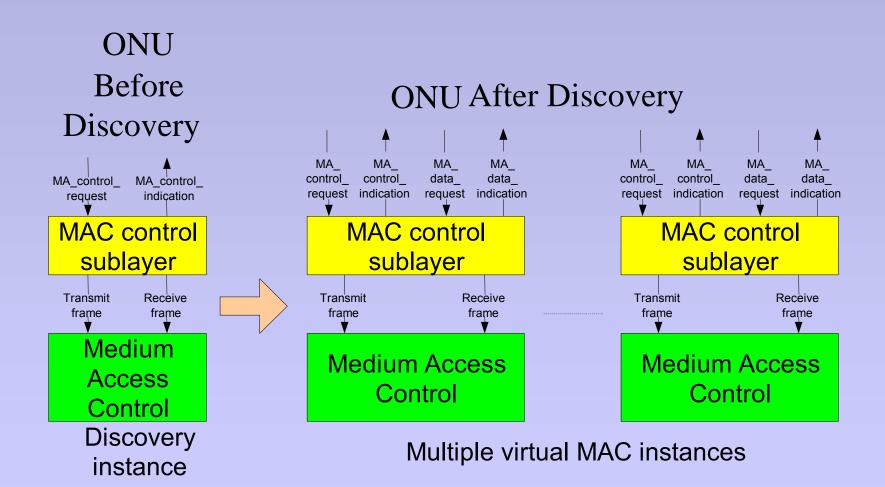
MPCP Auto Discovery Baseline Proposal

Tony Anderson
Bob Gaglianello
Onn Haran
David Horne
Ariel Maislos
Dolors Sala
Jian Song


Problem Description

- Harmonizing a new ONU into a PON
 - Knowing it's there
 - Knowing who it is
 - Compensating for RTD
 - Negotiating System parameters
 - Assigning Logical PHY ID's for Virtual MACs:
 P2PE, SE, Single copy Broadcast (SCB)

Discovery and Virtual MACs

- Various Virtual MACs (P2PE, SE, SCB) are being defined
 - A discovery/default Logical PHY ID (=0?) is used following ONU power-up/reset
 - SCB mode can use the same default PHY_ID value
 - Additional PHY_IDs are assigned during registration
 - Only during discovery can Virtual MACs be registered (Logical PHY ID assigned)
 - Support for dynamically registering individual Virtual MACs after discovery is under consideration

Discovery Process Conceptual View

ONU Behavior During Discovery

- At Power-up / Reset, an ONU enters Discovery State:
 - Undiscovered ONU's Await Reception of "Discovery Gate" message from OLT
- ONU responds only:
 - If received message's Logical PHY ID matches discovery/default PHY ID and the grant type is discovery

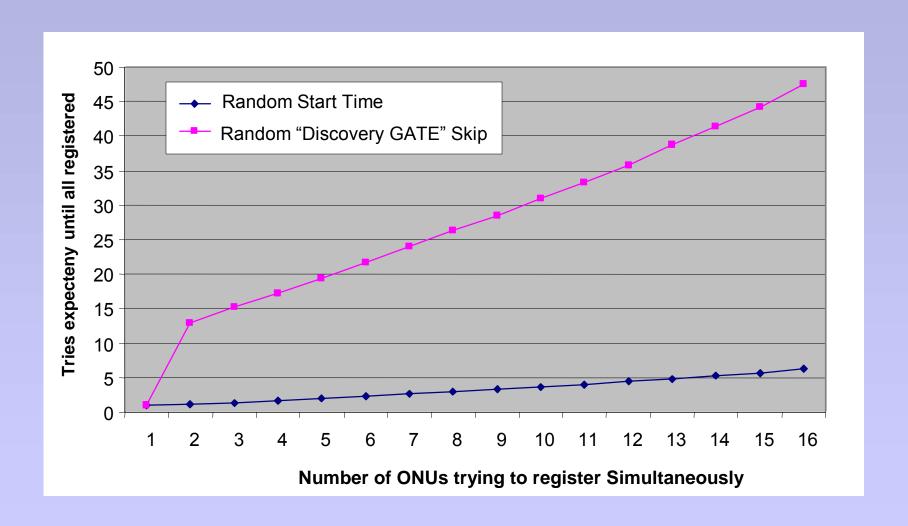
OLT Behavior During Discovery

- OLT Must Periodically Reserve Time Periods for Discovery
 - This Discovery Window must be large enough to handle maximum reach of 20 Km (200 usecs RTD)
 - The Frequency of discovery windows can be chosen for desired overhead
- Since Undiscovered ONU Addresses are Unknown
 - "Discovery Gates" are broadcast to all ONU's
 - A globally assigned, link constrained, multicast MAC address should be defined (Request one from 802.xx)
- If MAC addresses are known through a Provisioning interface, then "Unicast MAC" addresses can be used for "Discovery Gates"

Discovery Protocol

- Four MAC control messages implement the protocol
 - "Discovery GATE": Creates transmission opportunity for undiscovered devices
 - Register_Request: ONU response to "Discovery Gate"
 - Register: OLT response to Register_Request
 - Register_Ack: ONU response to Register
- ONU's can wake-up Simultaneously
 - Protocol must deal with contention in Register_Requests
- Multiple ONU's can potentially be registered within single Discovery time period

Discovery Sequence Summary


Sequence – Failure Modes

- OLT assumes ONU is unregistered if:
 - REGISTER_ACK message wasn't received at the first grant opportunity
 - ONU responds to "Discovery GATE" messages
- ONU assumes it is unregistered if:
 - After sending a REGISTER_REQUEST message, it receives a "Discovery GATE" before receiving a REGISTER message
 - After sending a REGISTER_ACK message, it receives a "Discovery GATE" before receiving a "Normal GATE" message

Resolving Discovery Contention

- Some sort of randomization must be applied to ONU Register messages to minimize collisions
- Two options are being investigated:
 - ONU skips (ignores) random number of discovery windows if previous ONU response wasn't acknowledged
 - Graph represents exponentially growing backoff scenario
 - ONU responds to every discovery opportunity using a random delay within the discovery window
 - Graph represents the scenario in which the window size allows up to 8 ONUs to be registered within a single discovery window
 - Discovery window size is fixed for entire graph

Contention Resolution Comparison

Comparison of two schemes

- Compare case where 8 ONU's are registering simultaneously
 - For Random Discovery Gate Time Case:
 - It takes 3 discovery windows to register all 8 ONU's
 - For 0.1 sec discovery window rate ==> 0.3 seconds
 - For 1 sec discovery window rate ==> 3 seconds
 - For Random Discovery Gate Skip Case:
 - It takes 26 discovery windows to register all 8 ONU's
 - For 0.1 sec discovery window rate ==> 2.6 seconds
 - For 1 sec discovery window rate ==> 26 seconds

Protocol Implications on Link Efficiency

- Link efficiency is impacted by:
 - Frequency of discovery windows
 - Link efficiency goes down with more frequent discovery windows
 - Frequency also impacts length of time-out for error recovery
 - Length of discovery windows
 - Larger windows allow more ONUs to be registered per window
 - Link efficiency goes down with larger discovery windows
 - Values for these parameters are left up to system implementers/designers

Protocol Implications on Link Efficiency: An Example

- For Max Reach, 200 usecs RTD, window must be 200 usecs plus enough time for:
 - single register_request message (random "discovery gate" skip case)
 - several register_request messages (random start time case)
- For 64 byte messages: approximately 2 usecs link occupancy
 - 1 usec for message, 1 usec for (guard band + Laser turn-on/off).
- For
 - random "discovery gate" skip case: use 2 usecs
 - random start time case: use (16 * 2 usecs) = 32 usecs
- This totals:
 - For random "discovery gate" skip case: 202 usecs
 - For random start time case: 232 usecs

Example Continued

The Overhead for Discovery for various Window Rates:

Rate	Random "Discovery Gate" skip	Random start time
0.1 second:	0.202%	0.232%
1 second:	0.0202 %	0.0232 %
5 seconds:	0.00404%	0.00464%
10 seconds:	0.00202%	0.00232%

- For rates 1 second and above, these overheads appear negligible
- Both schemes overhead is dominated by RTD for Maximum reach

Unresolved Issues

- Assignment of Logical PHY ID's or use existing ONU MAC addresses
- Support for Dynamic registration of individual Virtual MACs
- Assignment of BW to virtual MACs
- Discovery Contention Resolution Scheme.
- Defining SE Virtual MACs
- Number of virtual MACs allowed of each type (P2PE, SCB, SE)
- Static provisioning of MAC addresses versus Discovery protocol

P2MP Motion: MPCP Auto Discovery

P2MP Track Motion:

Use proposal <gaglianello_1_0302.pdf> as a basis for the first P2MP draft, with the exception of:

- removal of slide # 16
- replace slide #11 with revised graph presented by Gaglianello

Motion: Bob Gaglianello

Second: Tom Dineen

Y: ___42

N: 0

A: 6