# OAM in Frames

Denton Gentry
Dominet Systems

#### **Overview of Presentation**

1. Summary of proposal

2. Security and Authentication

3. SNMP

## **Summary of proposal**

- Functionality in MAC Control layer
- OAM in Frames
  - Send statistics from clause 30
  - Link monitor sends one frame per second
  - Failure events also send stats
- Independent of PHY
  - Works with existing PHYs
  - No additional burden for future PHYs
- Base on Slow Protocol (Annex 43B)
  - Limit number of frames/sec (5 now, can increase if needed)
  - 802.1D compliant bridges do not propagate

## **Summary of proposal**

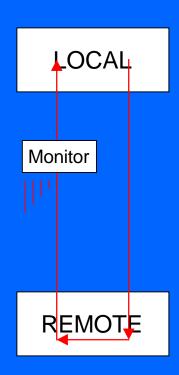
- Simple encapsulation
  - 1 byte code

| 00 | TEST Request  |
|----|---------------|
| 01 | TEST Response |
| 02 | Link Monitor  |
| 03 | etc           |



## **Summary of proposal: Link Monitoring**

- Send stats from Clause 30
  - Encoded as type,length,value
  - Type from Annex 30 arcs
     <statType, statLen, statValue>
    - Start with tuple after csmacdmgmt.
  - Define vendor extension mechanism
    - If we don't, they'll each choose a different mechanism
    - Distinguish via OUI?
  - Doesn't extend to arbitrary MIB variables
    - SNMP MIBs depend on SNMP semantics
- Periodic announcement is the key mechanism
  - Could also allow queries for additional information


## **Summary of proposal: SNMP**

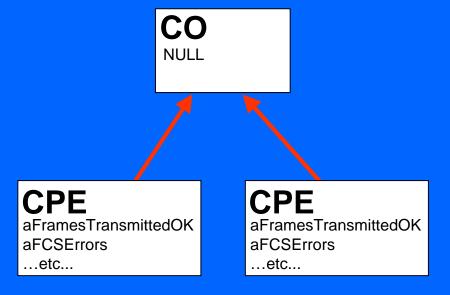
- OAM intended as supplement to SNMP
  - Store stats from remote end
  - SNMP can query them later after failure
- Received stats stored in oRemoteEntity
  - New object class in Clause 30
  - Prepend source MAC address
    - Needed for shared networks

MACaddr1: <stat1><stat2><stat3>

MACaddr2: <stat1><stat2>

MACaddr3: <stat1><stat2><stat3>

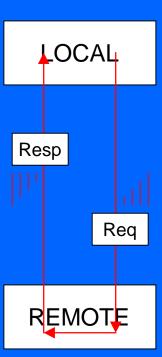



## Summary of proposal: No Master/Slave

No inherent Master/Slave relationship

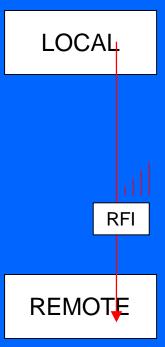
aFramesXmittedOK

**aFCSErrors** 


- Link Monitor stats defined by a variable
  - Configure OLT not to send stats to CPE
- Do not embed master/slave relationship into 802.3 spec
  - 802.3 covers more than one market space

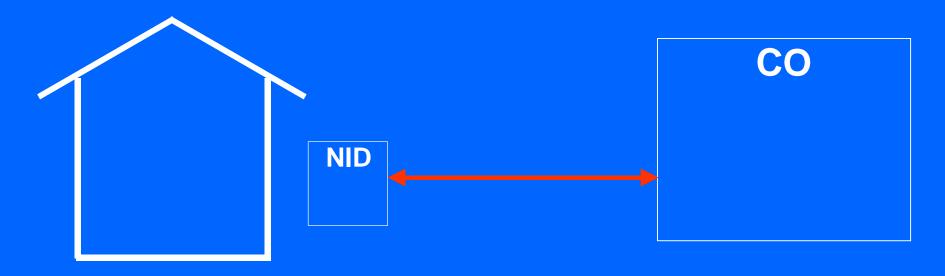


## Summary of proposal: Remote Loopback


# Remote Loopback using TEST frames

- Send request, get response
- Non modal (mix TEST with regular traffic)
- Intended for connectivity test
  - Limited number of packets/sec.
- Not intended as throughput test
  - Best done at L3, where the services run
- Not intended as BERT test
  - Symbol & FEC error count is measure of link quality
  - High bit rate TEST = more expensive implementation




## **Summary of proposal: Remote Fault**

- Most PHYs provide binary RFI indication
  - This is good.
- Access market may require more
  - Troubleshooting performed at CO
  - Subscriber has little expertise
  - Truck roll to subscriber is expensive
- If required, use OAM facility for this
  - Send OAM packets with information about fault
  - Alternative is complex error handling in PHY



## Summary of proposal: Deployment model

- Demarc should be a bridge or L3 device
  - Has to transfer between dissimilar speed links
  - EFM <-> 10/100/1000 or 802.11, for example
- Can also work if demarc is within customer kit
  - Security dependant on implementation of device



## Summary of proposal: What it isn't

#### Note a few things not supported:

- No SETs
  - OAM does not modify configuration of remote
  - Ethernet links configure themselves locally
- Not a full-fledged management facility
  - OAM strives only to maintain link integrity
    - · Even with an "unmanaged" device at one end
  - Managed devices must include a management protocol
- Not routable
  - Messages transit only a single link
    - Possible to design a forwarding proxy; out of 802.3 scope
  - Not intended to manage entire infrastructure

#### **Overview of Presentation**

2. Security and Authentication

# **Security & Authentication**

- Security conscious environments
  - Require strong proof of identity
  - Do not allow unauthorized access
  - Do not reveal information to unauthorized parties
- OAM helps assure link functionality
  - If link no worky, authentication no worky
  - Need limited OAM before authentication
    - Allow full OAM functionality after authentication
  - No SETs
    - Security threat only of leaking information

## **Security & Authentication**

- Mechanisms exist to authenticate a port
  - 802.1x
- Mechanisms exist to authenticate a node
  - DHCP w/ MD5 signature
- Mechanisms exist to authenticate users
  - PPPoE w/ RADIUS
  - login password (S/Key or otherwise)
- Mechanisms exist to authenticate mgmt packets
  - SNMPv3
  - IPsec w/ HMAC authentication
- The world does not need another mechanism
  - OAM should rely on existing facilities, not invent another one

## **Authentication proposal**

- 802.3 should not define yet another mechanism
  - Include an attribute for authentication state
    - Enumerated Nonauthenticated, authenticated
  - Defaults to nonauthenticated
- Management agents can change state
  - after 802.1x authentication
  - after any user logs in via PPPoE
  - via a secure protocol like SNMPv3
  - ... etc
- 802.1x authentication would be straightforward
  - Out of 802.3 scope due to layering

## **Authentication proposal**

- OAM Link Monitoring stats defined by attribute
- Include two attributes defining stats to send
  - Nonauthenticated and authenticated

Nonauthenticated

aFCSErrors

Authenticated

aFramesReceivedOK

aFramesTransmittedOK

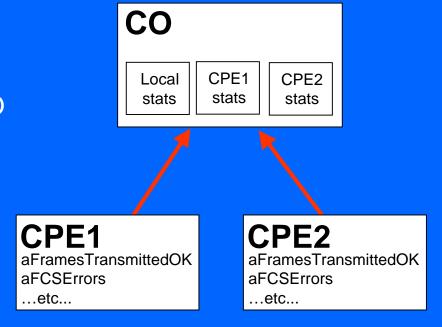
aFCSErrors

- Allows minimal information before authentication
  - Maximal information after authentication

#### **Authentication & Shared Networks**

- What to do about shared networks
  - No way to know if every node on link has authenticated
    - Nodes are invisible until they transmit
  - Any node on the link could snoop OAM
- No simple solution to this problem
  - For example, 802.1x punts on shared networks
  - Would have to encrypt payloads, distribute keys
- Likely not an issue for PONs & access networks
  - Carrier will never send sensitive stats (authenticated or no)
  - Subscribers cannot see each others traffic
- Recommend no heroic measures be taken
  - Shared networks are what they are

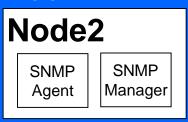
# **Security Threats: DoS**


- Denial of Service: overwhelm far end with traffic
  - Attacker ignores the limit on packets/sec
  - Attacker is easy to find: OAM packets do not propagate
- OAM is stateless
  - Each packet processed independently
  - Packets can be dropped as necessary
  - Defense against DoS: drop excess packets
- Several implementation issues
  - don't allow DoS on one MAC to affect other MACs

### **Overview of Presentation**

3. SNMP

## **Supplementing SNMP**


- OAM supplements SNMP
  - Upstream stores recent stats
  - Use SNMP to query stats from CO



- Question posed: why not just use SNMP?
  - CO would query stats from CPE1 and CPE2
  - Once per second

## Why supplement SNMP

- Issue 1: Requires SNMP managers
  - SNMP agents answer queries, manager launch them
  - Managers not current practice in network gear
- Issue 2: SNMP is unicast
  - Must discover what nodes are out there
  - Unicasts will propagate through bridges
- Issue 3: SNMP is a MAC Client
  - Prioritization and Head of Line blocking
  - Cannot use for failure diagnosis
- Conclusion: OAM provides useful supplement







## **Summary**

- Summarized proposal
  - OAM in MAC Control

- Security and authentication hook
  - Allow different behavior before and after authentication
  - Do not invent yet another authentication mechanism
- Supplementing SNMP