Ethernet PON Protocol Suggestion

Onn Haran, Passave Networks

Scope

- Device registration
 - Device discovery
 - Ranging
- Access control (request / grant)

Control Channel – Side Note

- Use of MAC control frames is preferred
- Addition of new opcodes to MAC control is required

• Other mechanisms are not excluded

Device Registration

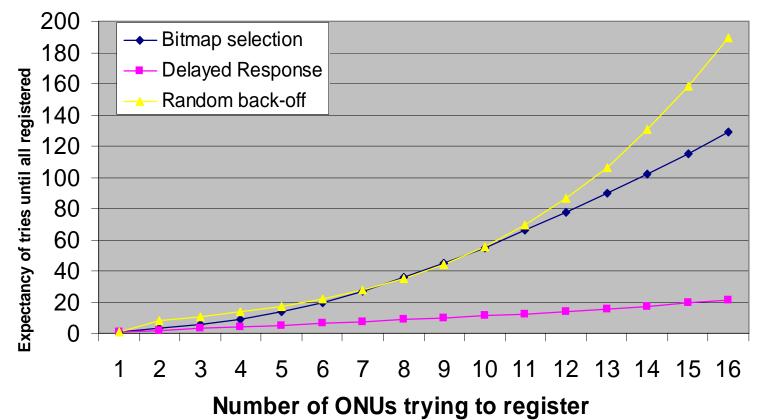
- Discovery of new devices in the network:
 - MAC address
 - Distance from ONU
 - Device capabilities
 - Power levels
- The process requires opening a receive window (200µsec for a 20km span)

Device Discovery

- Device discovery is a periodic process:
 - Long periods → high delays when adding ONUs
 - Short periods \rightarrow high bandwidth loss
- The period is implementation specificBoundaries should be specified

Collision Domain

- A multicast address is used to address unregistered devices
- Collisions probable with multiple devices



Collision Avoidance Solutions

- Some or all of these solutions:
 - Specifying bit masks for devices that are allowed to response at each occasion managed back off
 - Back off for random time when not acknowledged
 - Random delay in the response time inside response window
 - Multiple responses for every request with random spacing

Collision avoidance comparision

Preferred Scheme

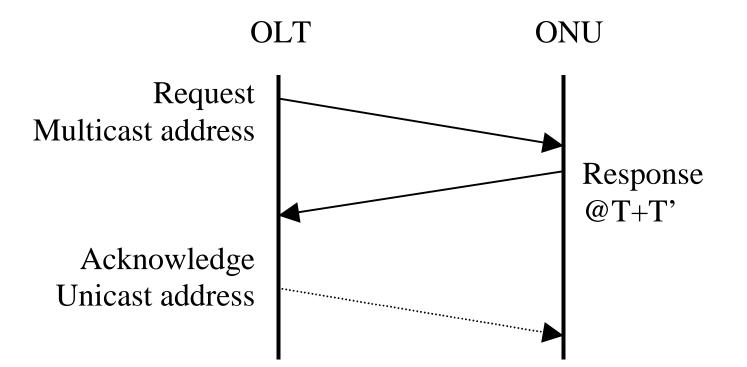
- Usually not many devices will be discovered simultaneously
- The main criteria for selection is simplicity of implementation
- Randomizing response time is easy and has the fastest convergence time

Ranging

- Significantly improves bandwidth utilization
- Can be added to registration process with minimal changes:
 - The registration request will state the current clock and time to answer → Device loads current clock
 - The response will state the time it was sent at
 - The acknowledge will include the trip delay → Device adjusts clock difference
 - The trip delay is:

Response reception time (@OLT) -Response sending time (@ONU)

2



Ranging Drifts

- Large drifts caused by clock asynchrony
 - Compensated by lock on Rx Clock
- Small drifts caused by temperature changes
 - A sufficient guard time compensates this phenomenon
 - Tracking of grant start at OLT compensates as well
 - OLT performs periodic non-destructive re-ranging

Scheme Summary

Response Packet Content

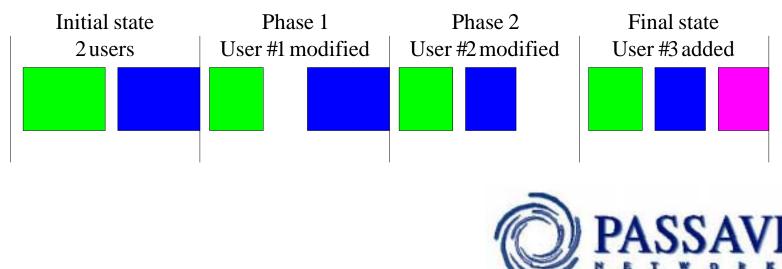
- ONU MAC identity
- Time tag
- Power measurement
- Device capabilities (TBD ...)

Device registration
Device discovery
Ranging

Access control (request / grant)

Access Control Logic

- Access granting is safer than access denial
 Better say "talk" than "shut-up"
- Easier to say "talk at time T₁" than to say "talk T₁ from now"
 - Time packet received is unpredictable
- Pause is "shut-up until T_1 "
 - Pause can't be used!


Fixed Access Control

- Fixed allocation to users denies dynamic bandwidth distribution
 - Limit customer differentiation
 - Limit possible applications
- Prevents over subscription
- Not robust against failure scenarios similar to problems rising from access denial

Endless Granting

- Changing bandwidth partition initiates serial process of communication to all ONUs
 - Example: addition of new devices to network

Suggested Access Control

- One-time grant
- Concatenation of several grants allowed:
 - "talk between T1 to T2 and between T3 to T4..."
- ONU can request more bandwidth
 - Request packets sent with growth of bandwidth demand
 - OLT not required to respond in real-time for those requests

Recommendations

- Add a device registration process based on scheme showed
- Access control should be based on onetime grants
- Enable dynamic bandwidth changes in response to ONU requests

