Encapsulation and Framing

Hugh Barrass

(some brief comments)
Definitions

• Encapsulation
 The technique used by layered protocols in which a layer adds header information to the protocol data unit (PDU) from the layer above.
 Used to identify the Start (and End) of packet – may add protection.

• Framing
 The definition of delimiters and contents for the protocol data unit (PDU).
 Defined for Ethernet and unchanged (in essence) for 15 years.

• Encapsulation != Framing
 In general the two are completely orthogonal.
 The MAC should not be able to detect the encapsulation.
Encapsulation Basics

Example system

(clocked at x-MHz)

Nibble Wide Data

Separate Framing Signal(s)

(clocked at 5x-MHz)

\[
\begin{array}{c}
\text{4 clocks data} \\
\text{1 clock control}
\end{array}
\]

• Encapsulation achieved by clocking faster (25% overhead)
 Very fragile, susceptible to corruption, very hard to synchronize.

• Nobody would use this system in real life!
Encapsulation Options (1)

• **N** consecutive bits of data are encoded as an **m** bit codeword

 2^n data codewords plus control codewords must be defined out of a possible 2^m

 Codewords may be chosen to add protection against framing errors
 Control codewords may also carry data if required

• **Multiple variants used for Ethernet**
Encapsulation Options (2)

Substitution Codes

- Define an escape codeword, substitute occurrences of matching patterns in data stream
 - Very simple coding in use for more than 30 years
 - Causes data dependant variation in bit rate
 - May also be susceptible to framing errors
- Popular in modem standards
Encapsulation 64b/66b

- **Byte oriented control words:**
 - 2^{64} data only codewords
 - 2^{59} codewords for each control code
 - As used for 10Gig Ethernet
- **Overhead** = $2/64$ (≈3%) + at least 1 byte per frame (SOP)
Ethernet Framing

Framing is performed by the MAC

The PHY cannot change the framing

Defined in 802.3 – 3.1

= 96 bits
For all PHYs
Why not ditch the useless part?

• Neither preamble nor IPG is required for full duplex system
 Remove these parts to gain a (frame length dependant) increase in b/w
• More than 100,000,000 MAC devices already installed
 MAC must see unchanged framing
• High density (integrated MAC) silicon supports QOS
 Constant Bit Rate algorithms assume Ethernet framing preserved
• No Ethernet has changed this frame format (including IPG)
 What is Ethernet?
In Conclusion

- **Encapsulation**
 - Low overhead, fixed overhead – already defined for Ethernet.
 - 64b/66b is the clear choice.
 - Add CRC16 to increase protection (per Barry’s analysis).

- **Framing**
 - Preserve the whole Ethernet frame format – including preamble and IPG.
 - Supports all existing MAC devices.

- **Encapsulation + Framing**
 - Very similar to 10GigE.