
Slide 1IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

 Overview of different
encapsulation technologies

 Overview of different
encapsulation technologies

Compares main parameters of encapsulation
technologies proposed for EFM copper

Vladimir Oksman
Broadcom Corporation

July 2002

Slide 2IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

AgendaAgenda

• This presentation describes two alternative
encapsulation techniques - GFP and COBS.
It also compares main parameters of these and the
earlier proposed encapsulation techniques - HDLC
and 64b/66b

• The goal of this presentation is to assist the selection
of the appropriate encapsulation technique for EFM
copper

Slide 3IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

COBS: brief introductionCOBS: brief introduction
• COBS = Consistent Overhead Byte Stuffing

Introduced in 1999 [1] mostly as an alternative to HDLC

- Build to operate in packet mode over a byte-synchronous
channel

- Another protocol using transparent bytes, but with
 significantly reduced statistical overhead

- Can carry any byte-oriented payloads (Ethernet, IP, etc)

- Simple, robust, and efficient

Slide 4IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

COBS: protocolCOBS: protocol
• Structure:

1. Start-of-packet byte (flag) = 0x00

2. End-of-packet byte = 0x00, may be the flag of the next frame

3. Code byte - follows the flag and gets a value equal to the
number of bytes to the first 0x00 data byte (if < 255) plus 1

4. All 0x00 in the transported data frame are changed to the
values equal to the number of bytes to the next 0x00 data byte (if
< 255) plus 1

5. If the number of bytes between the Code byte or any 0x00 byte
and the following 0x00 byte is more then 254, the Code byte or
relevant 0x00 byte is set to 0xFF and Stuff byte is introduced with
a value equal to the number of bytes before the next 0x00 data
byte (if < 255) plus 1

Slide 5IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

COBS: frameCOBS: frame

0x00

0x00

0x00

0x00

0x00

N1+1

N2+1

0xFF

N3+1

N4+1

Data frame

COBS frame
SOF byte
Code byte

N1 non-zero data bytes

N2 non-zero data bytes

Stuff byte

254 non-zero data bytes

N4 non-zero data bytes

N3 non-zero data bytes

EOF byte

Slide 6IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

COBS: specificsCOBS: specifics
• Inter-frame gaps should be filled by Flags (0x00)

• Payload:
- special header could be added to support loop bonding
- CRC could be appended to provide the desired PUE and
 error monitoring

• Very low fixed overhead - only 2 overhead bytes per frame
(SOP, Code byte)

• Very low statistical overhead - the maximum number of Stuff
bytes is 1 per 255 data bytes

• Very simple synchronization - searching for Flag (0x00)

Slide 7IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

GFP: brief introductionGFP: brief introduction

• GFP = General Framing Procedure
Recently standardized by T1 and ITU as a generic adaptation
protocol for multi-service broadband applications.

- Build to operate both in packet mode (Frame-Mapped GFP)
 and continuous mode (Transparent-Mapped GFP) over a
 byte-synchronous channel

- In packet mode intended to bear all variety of byte-oriented
 packet payloads (Ethernet, PPP, IP, MPLS, etc)

- Simple, flexible, robust, and efficient

Slide 8IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

GFP: frameGFP: frame

• GFP encapsulation includes:

- a 4-byte header for frame delineation
- a up to 65535-byte payload (transmit data)
- a 4-byte IDLE frame to fill up the inter-frame gaps

Payload Area

Payload Header

1 2 3 4 5 6 7 8Octet

Bit

Header

 8- 65535

 4
1
2
3
4
5

.

.

.

n

Octet

1

2

3

4

Bit

 1 2 3 4 5 6 7 8

HEC <07:00>

PLI <07:00>

HEC <15:08>

PLI <15:08>

Header

Payload length
indicator

Header CRC

Slide 9IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

Frame-Mapped GFP: specificsFrame-Mapped GFP: specifics
• Header

- Provides single bit error correction and multi-error detection
- IDLE header: PLI = 0x00

• Payload:
- A 4-byte payload header to indicate the type of the payload, the
 carried protocol and other auxiliary information
- A 4-byte optional FCS

• Low fixed overhead - only 4 overhead bytes per frame

• NO statistical overhead

• Synchronization - by searching for a valid header.
Uses PLI to find the next frame boundary

Slide 10IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

GFP for EFMGFP for EFM

• Frame-Mapped GFP with possible simplifications:

• Header:
- Scrambling of the header may be not used since there is a
 separate scrambling in EFM PMD
- Error correction in the header may not be performed
 (ineffective, as multiple errors are more probable)

• Payload:
- special 3-4 byte optional header could be added instead a
 standard one to support loop bonding
- 2-byte CRC could be appended instead a 4-byte FCS to
 provide the desired PUE and error monitoring

Slide 11IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

Main parametersMain parameters

• The following parameters of the encapsulation
technique were considered for comparison:

• Overhead (fixed and statistical)

• Synchronization (packet mode and continuous mode)

• Structure: byte-oriented or bit-oriented

• Probability of undetected error

• Complexity

• Field experience

Slide 12IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

Overhead computationOverhead computation

• Probability of undetected error (PUE)

It was shown that standard Ethernet CRC doesn’t provide the
desired PUE. Additional means, such as 2-byte CRC or usage
of FEC error indicator are necessary. Thus, additional CRC is
excluded from overhead computations - it is assumed that it
could be either used or not for any encapsulation technique

• Additional headers

All additional headers intended for optional and/or auxiliary
use (as Address/Control fields in HDLC, for instance) are
excluded from overhead computation

Slide 13IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

HDLC (octet stuffing)HDLC (octet stuffing)
• Overhead:

fixed: very low (1 bytes per frame, ~0.15% for an average frame)
statistical: low in average (~ 3%), but 100% maximum value

• Synchronization: very easy
Packet mode oriented - uses transparency mechanism. Frame is
detected by searching for 1-byte flags

• Structure: byte-oriented

• Complexity: very low

• Field experience: huge, widely used for different data networks
Current ITU-T standard for VDSL

Slide 14IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

HDLC - disadvantagesHDLC - disadvantages

• A concern was raised on high maximum statistical
overhead - up to 100%- although high values of the
overhead appear with very low probability.

Example: For a frame of average length (500 bytes) a

probability of only 10%statistical overhead is10-38.

This is much lower than even probability of an
undetected error!

Slide 15IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

64b/66b64b/66b
• Overhead:

fixed: moderate (3.2% for long frames and 6.2% for short frames)
statistical: low (< 10.6% for short frames and < 0.5% for long frames)

• Synchronization: complex in packet mode
Uses Sync preambles distributed over the frame; build mostly for
synchronized continuous mode. Not convenient for packet mode.

• Structure: bit-oriented

• Complexity: moderate

• Field experience: IEEE standard for 10G

Slide 16IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

Frame-Mapped GFPFrame-Mapped GFP
• Overhead:

fixed: low (4 bytes per frame)
statistical: None

• Synchronization: more complex
Build for packet mode, but frame alignment seems to be more
complex than HDLC/COBS. Requires on-line search and
processing of 2-byte code-words (similar to I.432)

• Structure: byte-oriented

• Complexity: moderate (also requires length of the packet)

• Field experience: newly defined ANSI and ITU-T standard
technology for packet transport in multi-protocol networks

Slide 17IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

COBSCOBS

• Overhead:
fixed: very low (2 bytes per frame)
statistical: very low (< 0.4%)

• Synchronization: very easy
Packet mode oriented - uses transparen bytes mechanism. Frame
is detected by searching for 1-byte flags

• Structure: byte-oriented

• Complexity: moderate (requires a 254-byte buffer)

• Field experience: limited usage

Slide 18IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

SummarySummary

Parameter HDLC 64b/66b GFP COBS

Overhead low,
variable

moderate,
almost fixed

low,
fixed

low,
almost fixed

Synchronization very easy complex easy very easy

Structure byte-
oriented

bit-oriented byte-
oriented

byte-
oriented

Complexity very low moderate moderate moderate

Field experience huge 10G some some

Standardized ITU, IETF IEEE.802 ITU, T1 ---

Slide 19IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

ConclusionsConclusions

• HDLC still seems to be a good candidate

• If HDLC can’t be adopted,

GFP seems to be the more attractive than other
considered technique due to:
- proper synchronization in packet mode
- simplicity of implementation
- good international standard support

Slide 20IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

Possible GFP implementation for EFMPossible GFP implementation for EFM

• Header:
- A 4-byte standard header for frame delineation
- Error correction - optional
- Scrambling - optional

• Payload (transported Ethernet frame):
- Preamble and SFD stripped
- A special 3-4 byte optional header to support loop bonding etc.
- Standard G.gfp scrambler to improve frame delineation
- A 2-byte CRC appended to provide the desired PUE and error
 monitoring

• Inter-frame gaps

- A standard IDLE GFP header (PLI=0x00)

Slide 21IEEE 802.3 EFM SGFile: EFM_Vancouver_02.ppt

Possible further simplificationPossible further simplification
• Inter-frame gaps

- IDLE byte may be used instead IDLE header - reduces overhead
and simplifies search for frame header if uses a value not used
by PLI (0xFF, for instance, since for Ethernet PLI < 1538)

