EFM Copper

EFM_{Cu} Link Control

EFM July, 2002

Scott Simon (Cisco Systems, Inc.)

ssimon_1_07_02.pdf

IEEE802.3ah EFM July 2002

ssimon@cisco.com

Topics

- Recap of previous link control discussion
- MIB, the MDIO and PHY parameters
- Link initiation, handshake, G.994
- Next steps

Topics from the past:

• Link Control needed for EFM

Band plan, bits/Hz, TX power, interleaver depth, etc

Control of remote PHY

NT (CPE) device always acts as a slave to the LT (Concentrator)

Primitive start-up mode

Link is initially established with a robust, common set of PMD parameters

- PHY parameters and the MIB...
- Bandplan flexibility

Simple Example

1. Host (DSLAM, switch, etc. . .) configured for various "profiles"

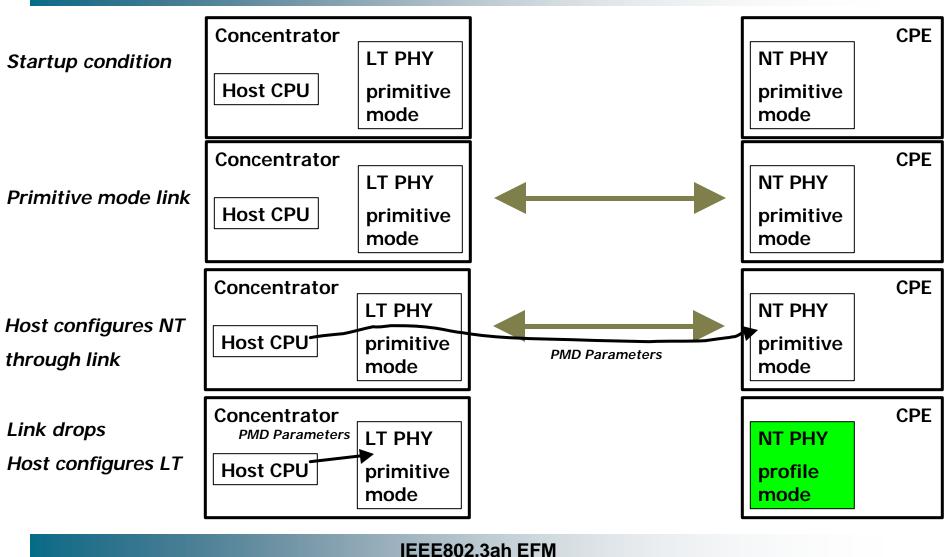
Each profile contains link settings for a particular environment. EXAMPLES:

PROFILE A: long reach, low bit rate (small band, sparse constellation)

PROFILE B: short reach, noise immune (large band, sparse constellation, deep interleaver, higher TX power)

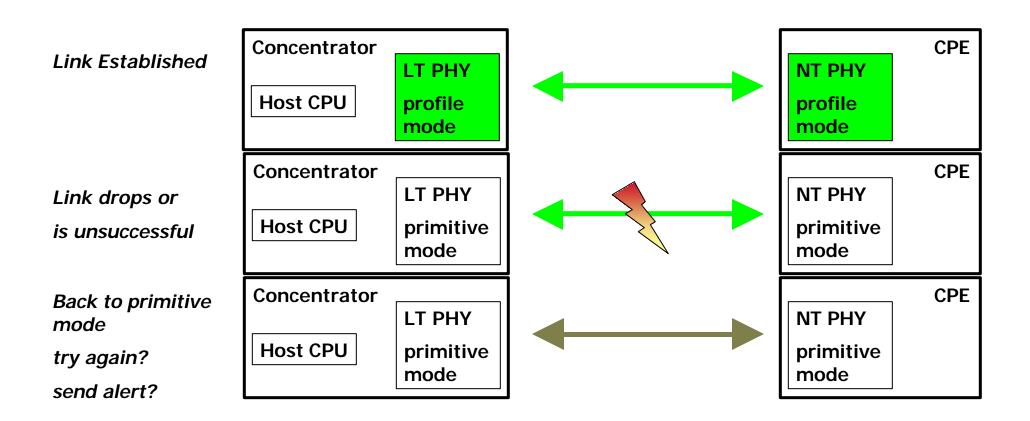
- 2. Host sets each LT port PMD parameters to primitive mode via MDIO Link established with NT in primitive mode
- 3. Host downloads profile settings to NT using OAM channel

Host instructs NT to switch to profile mode


4. Host sets LT PMD settings to profile mode

Link established in new mode

5. If link goes down, each side reverts to primitive mode and waits for link


IEE	E802	.3ah	EFM
	July	2002	2

Simple Example

July 2002

Simple Example

IEEE802.3ah EFM	
July 2002	6

Ethernet Management 101

- 802.3 Clauses 5, 30 define manageable objects for Ethernet misnomered "Ethernet MIB", but really protocol independent these objects are mapped to GDMO and SNMP MIBs by Annex 30, IETF. see law_1_0901.pdf
- The Ethernet MIB is a list that describes the state objects on an Ethernet PHY

Manageables and Observables

<u>Closely</u> related to PHY registers

Objects must not be derived from other objects

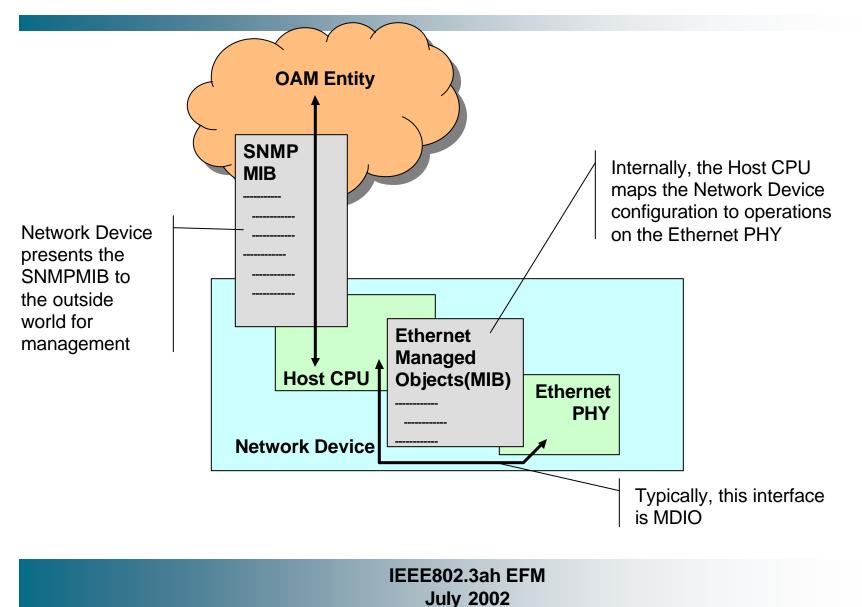
 This is completely separate from the well-known SNMP MIB that a device presents to the outside world

Ethernet Management 102

- 802.3 already has a MIB, which contains PHY and MAC control
- 802.3ah_{Cu} will need to define extensions to this MIB that pertain to our specific functionality

PMD parameters, link aggregation, etc.

include management of LT and NT


 These manageable objects can be accessed through an arbitrary "management interface"

802.3 typically uses MDIO

We propose using the 802.3ae Clause 45 MDIO extension to provide enough register space and addressing capability (see *turner_1_0901.pdf*)

IEEE802.3ah EFM	
July 2002	

System Management Example

Control of remote PMD

- All PMD parameters on NT controlled from LT host
 Uses OAM channel (VOC/EOC)
- LT host has total control of PMD algorithms Plug-n-play CPEs No need to restrict handshake or algorithms CPE can be made as simple as possible
- Remote PMD parameters appear in local MIB
 Accessible through MDIO

"Primitive" start-up mode

• All NT & LT devices start in primitive mode

Subset of operational modes,

Only the control channel is required, the data channel is optional

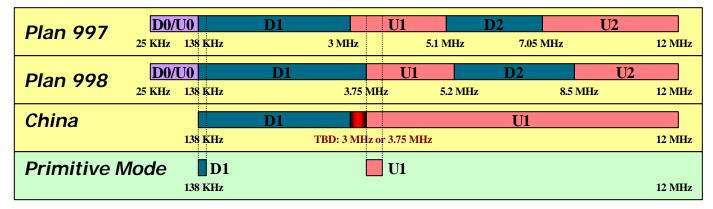
• Primitive mode should always make link

Narrow spectrum (universal spectral compatibility)

Lowest bits/hertz

i.e., very high noise margin

• Once link is established, host controls PMDs


Host can interrogate CPE capabilities then initiates normal operation in "Full" functionality mode

Change local & remote according to regional regulations

• Timeout falls back to primitive mode

If full link won't come up or if link is lost

What does Primitive Mode look like?

• Mini, subset bandplan

Always spectrally compliant

Most robust set of frequencies

Most robust constellation

IEEE802.3ah EFM	
July 2002	4

Primitive Mode and G.994

• G.994 is not required for this scheme

Standard can explicitly specify primitive mode parameters and the host takes over from there

- Proposal does not preclude use of G.994
- G.994 can be used to establish initial primitive mode link

We'll need to identify code points and carrier sets for EFM Cu

- G.994 can carry capabilities and parameters over the VOC/EOC
- G.994 is not complete

More on Remote PMD Control

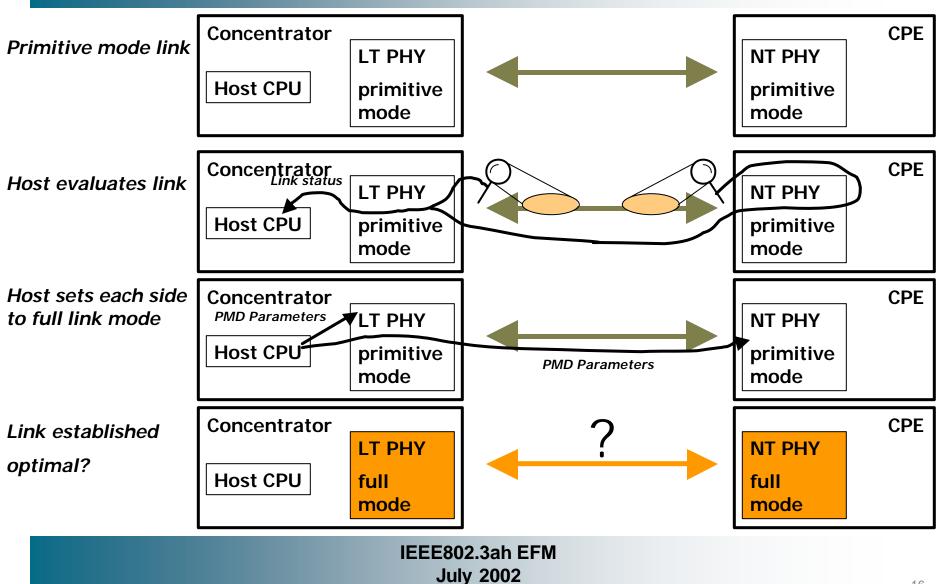
- Need to decide how much functionality is left up to the CPE PHY and how much is controlled by the Host
- Goals:
 - Keep CPE as simple as possible
 - Allow Host system (LT) flexibility and control
 - **Ensure interoperability**
 - Avoid excessive management of the CPE
 - **DMT Example:** The target band plan and bit rates might be controlled by the Host, but the NT decides on its own what subcarriers have poor SNR.
- Key Point: Whatever is NOT under the control of the Host system (LT) must be FULLY SPECIFIED by 802.3ah_{Cu} to insure interoperability and forwards/backwards compatibility

Basic Rate Adaptive Example

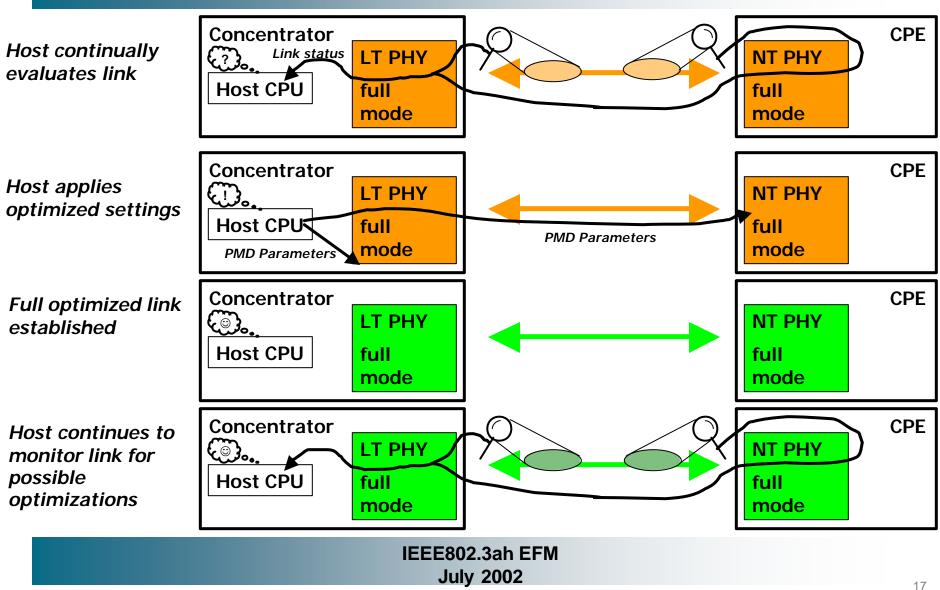
Same mechanisms as simple example. Only host behavior changes:

- **1.** LT and NT link in primitive mode
- 2. Host evaluates line condition based on parameters reported by PHY (SNR, RS errors, etc. . .)
- **3.** Host sets NT PHY to a some configuration

might be best guess or optimized by steps below


- 4. Host sets LT PHY to complementary configuration.
- 5. Link established?

NO: Host adapts parameters for better margin. Go to step 1


YES: Host continues to evaluate line condition, may update parameters to optimize rate, reach, or latency. Back to step 3

IEEE802.3ah EFM	
July 2002	15

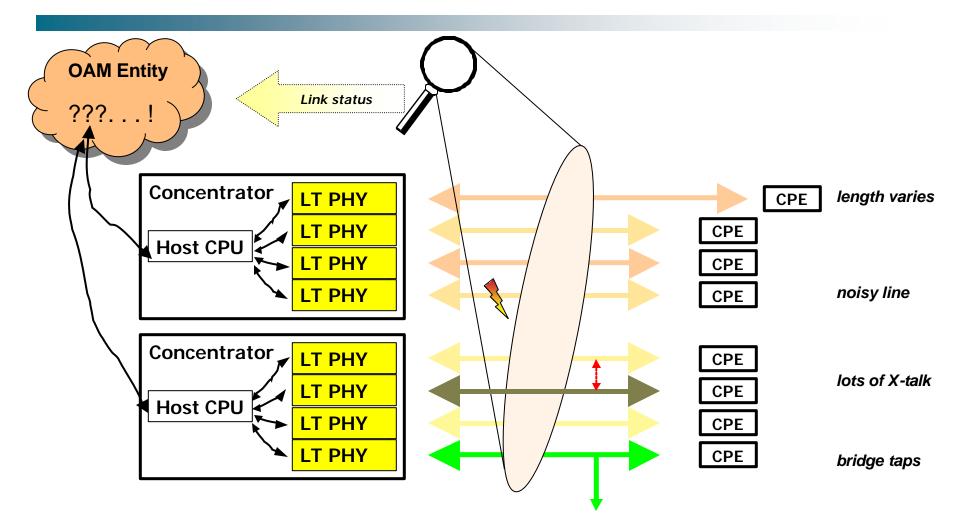
Basic Adaptive Example

Basic Adaptive Example

System-level Adaptive Example

- High-level OAM entity maintains multiple ports to decide PMD parameters
- Looks at all lines in an installation
- Can operate on a single host or across multiple hosts
- Examples:

create a "zipper" of DMT tones on FE/NEXTing ports


tweak transmit based on site cabling properties (bridge taps, attenuation)

• More stable than port-level adaptive methods

the system intelligence can prevent race conditions when 2+ ports try to optimize against each other

IEEE802.3ah EFM	
July 2002	1

System-level Adaptive Example

IEEE802.3ah EFM	
July 2002	10

Summary

• PMD control minimizes PHY state complexity

Complexity moved to host, amortized over n-ports on concentrator No need to fix PMD algorithms in standard Easier to allow regional variation & regulation

- PMD control through MIB and MDIO true to Ethernet.
 PHYs integrate with current model easily
- LT host control of NT PMD simplifies interoperability
 Different vendors' proprietary features operate with any brand of CPE
 No handshaking or negotiating required at PHY level
 Lowers CPE complexity
- Primitive mode is common baseline for advanced functionality

IEEE802.3ah EFM	
July 2002	

Next Steps

- Define EFM_{Cu} managed objects
- Define PMD control registers
- Define primitive mode values
- Define primitive mode link acquisition sequence

If using G.994: code points and carrier sets

IEE	E802.3ah EFM
	July 2002