# On Specifying Optical Power and Extinction Ratio

Vipul Bhatt (Vipul\_Bhatt@ieee.org) Piers Dawe (Piers\_Dawe@agilent.com) IEEE P802.3ah July 2002, Vancouver

## Background



•Average Power Pavg = (P0 + P1)/2

•Extinction Ratio ER = P1/P0

•Optical Modulation Amplitude OMA = P1 - P0

•Pavg = OMA\*0.5\*((ER+1)/(ER-1))

•ER = ((2\*Pavg) + OMA)/ ((2\*Pavg) - OMA)

•OMA = 2\*Pavg\*(ER-1)/(ER+1)

### The unconstrained picture



### **Constraint 1: Minimum ER**



#### **Constraint 1: Two flavors**



#### **Constraint 2: Pmax**



#### **Constraint 3A: Pmin**



### Constraint 3B: OMA(min)



#### Constrained picture A: 1 + 2 + 3A



#### Constrained picture B: 1 + 2 + 3B



#### Compromise: 1 + 2 + 3A + 3B



### Headroom



### **Decisions Needed**

- 1A or 1B? How loose or tight do we want the Minimum ER to be?
- 3A or 3B? Do we want the low power end to be specified as average power or OMA?
- Are these Exclusive-OR choices, or is a "redundant" compromise a better solution?
- How much headroom do we need?
- Different answers for different PMDs?

# **Options**

| Design option                                         | Arguments for                                                                                                                                                                        | Arguments against                                                                                                                        |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 1A + 2 + 3A, low ER,<br>Pmin                          | High yield, power meter friendly.                                                                                                                                                    | To a receiver, only AC swing matters. Unnecessarily restrictive.                                                                         |
| 1A + 2 + 3B, low ER,<br>OMAmin                        | High manufacturing yields.                                                                                                                                                           | Interferometric Noise penalty high.                                                                                                      |
| 1B + 2 + 3A, high ER,<br>Pmin                         | Power meter friendly. Compatible with ITU PON spec.                                                                                                                                  | Low manufacturing yields.                                                                                                                |
| 1B + 2 + 3B, high ER,<br>OMAmin                       | Power meter friendly.                                                                                                                                                                | But still needs mapping from OMA<br>to Pavg for power meters. So<br>what's the benefit?                                                  |
| 1A + 2 + 3A + 3B, low ER,<br>both Pmin and OMAmin     | Good compromise, high yield. Will<br>help 100M transmitters with margin<br>against BLW degradation. The<br>power requirements for 100M are<br>low enough to permit this flexibility. | Don't make the ER too low; it is not<br>necessary. Large experience base<br>has enabled vendors to achieve a<br>modestly high ER easily. |
| 1B + 2 + 3A + 3B, high<br>ER, both Pmin and<br>OMAmin | Good compromise. Maybe PON<br>friendly, according to some<br>implementers. If ER is not too high,<br>ideal for 1000BASE-EX and –BX.                                                  | Don't make ER too high. OLT<br>receivers can handle slightly lower<br>ER.                                                                |

## **Concluding Remarks**

- In the "Options" table, rows 5 and 6 seem more attractive than others. Further, the difference between the two depends on the subjective definitions of "high" and "low" ER.
- Suggest next steps:
  - Adopt 3A + 3B as the method of specifying low end of power.
  - Select Minimum ER and headroom for each PMD case by case, taking into account its unique cost structure and tolerances.