On Specifying Optical Power and Extinction Ratio

Vipul Bhatt (Vipul_Bhatt@ieee.org)
Piers Dawe (Piers_Dawe@agilent.com)
IEEE P802.3ah
July 2002, Vancouver

Background

- Average Power Pavg $=(\mathrm{P} 0+\mathrm{P} 1) / 2$
-Extinction Ratio ER = P1/P0
-Optical Modulation Amplitude OMA = P1 - P0
- Pavg $=$ OMA*0.5*((ER+1)/(ER-1))
-ER = ((2*Pavg) +OMA$) /\left(\left(2^{*} \mathrm{Pavg}\right)-\mathrm{OMA}\right)$
-OMA $=2^{*}$ Pavg $^{*}(E R-1) /(E R+1)$

The unconstrained picture

Constraint 1: Minimum ER

Constraint 1: Two flavors

Constraint 2: Pmax

Constraint 3A: Pmin

Constraint 3B: OMA(min)

Constrained picture A: $1+2+3 A$

Constrained picture B: $1+2+3 B$

Compromise: $1+2+3 A+3 B$

Headroom

Decisions Needed

- 1 A or 1 B ? How loose or tight do we want the Minimum ER to be?
- 3A or 3B? Do we want the low power end to be specified as average power or OMA?
- Are these Exclusive-OR choices, or is a "redundant" compromise a better solution?
- How much headroom do we need?
- Different answers for different PMDs?

Options

Design option	Arguments for	Arguments against
$1 A+2+3 A$, low ER, Pmin	High yield, power meter friendly.	To a receiver, only AC swing matters. Unnecessarily restrictive.
$1 A+2+3 B$, low ER, OMAmin	High manufacturing yields.	Interferometric Noise penalty high.
$1 B+2+3 A$, high ER, Pmin	Power meter friendly. Compatible with ITU PON spec.	Low manufacturing yields.
$1 B+2+3 B$, high ER, OMAmin	Power meter friendly.	But still needs mapping from OMA to Pavg for power meters. So what's the benefit?
1A $+2+3 A+3 B$, Iow ER, both Pmin and OMAmin	Good compromise, high yield. Will help 100M transmitters with margin against BLW degradation. The power requirements for 100M are low enough to permit this flexibility.	Don't make the ER too low; it is not necessary. Large experience base has enabled vendors to achieve a modestly high ER easily.
$1 B+2+3 A+3 B$, high	Good compromise. Maybe PON friendly, according to some implementers. If ER is not too high, ideal for 1000BASE-EX and -BX.	Don't make ER too high. OLT receivers can handle slightly lower ER.
ER, both Pmin and OMAmin		

Concluding Remarks

- In the "Options" table, rows 5 and 6 seem more attractive than others. Further, the difference between the two depends on the subjective definitions of "high" and "low" ER.
- Suggest next steps:
- Adopt 3A + 3B as the method of specifying low end of power.
- Select Minimum ER and headroom for each PMD case by case, taking into account its unique cost structure and tolerances.

