100M Ad Hoc Group

Progress report

Ulf Jönsson, Ericsson

IEEE 802.3ah Plenary Vancouver, Canada July 7-11, 2002

Outline

- 100M dual SMF
 - Eye pattern mask
 - Test pattern
 - Testing conditions relative to AC coupling
 - Jitter methodology
- 100M single SMF
 - Translation of TTC, TS-1000, to English
- Related presentations

The Baseline Wander Problem

- Unbalanced 4B/5B NRZI code
 - Ratio of 0s to 1s is between 4:6 and 6:4
- 100BASE-FX does not scramble the data
 - Neither before nor after 4B/5B encoding
- \Box Baseline wander
 - Gives tight vertical eye closure
 - Costs a significant penalty (~2dB)
 - A few "nasty" packets will have higher error probability than others

Draft Proposed Eye Mask

- Details found in *dawe_1_0702*
- Captures existing transceivers and allows for new low-cost transceivers
- Tolerates the baseline wander
- Assumes reasonably modern silicon with fast gates
 - Mask length depends on what timing window the CDR or SERDES needs

Test Pattern Considerations

- Test the eye using unbalanced "worst case" test pattern
- Component suppliers need bit level test
- Box-level suppliers need system level test
- Possible to allow both tests!
 - Proposal by Jerry Radcliffe (*radcliffe_1_0702*)
 - Define fixed bit level pattern which forms a series of legal Ethernet frames.
 - Use same pattern for system level test where the source and destination MAC addresses may vary

Test Conditions Relative to AC Coupling

- Oscilloscopes are DC coupled
 - Eye mask measurement should be DC coupled
- Problem: Possible to remove the baseline wander effect by having a long enough AC coupling time constant
- Solution: Use TDP measurement (see next slide)
 - Used in 802.3ae
 - Use together with unbalanced "worst-case" test pattern
 - Could use appropriate high pass filter in TDP reference receiver
- Other alternative solutions also possible
 - Define two eye masks (both balanced and unbalanced)
 - Measure AC coupled with time constant significantly shorter than worst case test pattern

TDP: Transmitter and Dispersion Penalty

• Test a transmitter by substitution against a very good one

Jitter Methodology

- Similar to 1000BASE-LX
- Specify all four test points, TP1 to TP4
 - TP2 important for TRx compliance
 - TP3 is similar to TP2 since operation over SMF without much dispersion
 - TP1 and TP4 allows for pluggable transceivers
- Values TBD (Piers Dawe is working on this)

100M single SMF

- K. Seto has translated the TTC, TS-1000, to English
 - See seto_1_0702
- Open issue:
 - Test pattern not specified

Related Presentations

- Presentations related to 100M ad hoc group work:
 - "Eye mask for 100 Mb/s", Piers Dawe (dawe_1_0702)
 - "Proposal for Base Line Wander test Pattern for 100BASE-FX(SMF)", Jerry Radcliffe (radcliffe_1_0702)
 - "TTC TS-1000 Class S Spec", K. Seto (seto_1_0702)