Guard Band Requirements

Ariel Maislos, Passave

1

How to Size the Guard Band?

□ The guard band is composed of multiple parts:

- Clock drift allowance + Path change allowance (thermal drift) – 16nSec resolution
- Max(Laser on, Laser off)
- Receiver AGC delay
- Frequency & phase lock
- Comma detect 48nSec
- Protocol clock resolution 16nSec

What is the dominant contribution?

– PMD/PMA performance

Reaching the Target Requirement

O What is the requirement?

- Low end-to-end delay
 - Dominant requirement set by TDM services
- High upstream utilization
 - High for FTTH
 - Very high for FTTB

□ What is good enough?

Utilization $+ 1 \approx GuardBand * N_{ONU}$ AccessCycle

1mSec RT Requirement

1 mSec

5

1.5mSec RT Requirement

2mSec RT Requirement

What is Good Enough?

- FSAN gives us 94.6% upstream utilization (prior to cell-tax)
- 1uSec Guard Band is as good or better except in
 64 split case
- □ At least 80nSec imposed by protocol layer

Two Orders of Magnitude!?

□ 900nSec→16nSec change in laser on/off time is two orders of magnitude

□ Justification: "Physically possible"

Example:

 Analysis based on utilization (1mSec RT 1uSec→112nSec):

 $98.4\% \rightarrow 99.82\%$ improvement for 16 split case $96.8\% \rightarrow 99.64\%$ improvement for 32 split case $93.6\% \rightarrow 99.28\%$ improvement for 64 split case

Conclusion

IuSec guard band gives better performance than FSAN up to 32 splits

- Guard band should be standardized on 1.5uSec to match FSAN
- Decreasing guard band does not improve performance in any significant parameter
- **Utilization good enough to unify FTTH with FTTB**

□ Cost can only go up