

Stream-based FEC proposal

Supporters

Ajay GummallaBroadcomFrank EffenbergerQuantum BridgeMark SankeyCalixOren MarmurFlexlightWalt SotoAgere

Basic principles


- FEC is a coding function
 - It shouldn't need to think about frames
 - It shouldn't get involved in protocol
 - It should have a fixed overhead
- Backward compatibility is an illusion
 - There are no EPON PHYs out there now
 - In a mixed environment, what is the power budget? How do I know what I have?

Stream-based FEC

- The FEC process accepts a block of data
 It doesn't care about the actual content
 - The data is just 'bits' to the FEC
- The FEC computes parity information
- The parity info, plus a FEC synchronization symbol, is inserted into the bit stream
- The receiving side reconstructs the original bit stream, and upper layers are unaware

Stream-FEC proposal

10b coded data Without FEC

10b coded data, FEC, and sync

S-FEC encoding algorithm

- PCS data is accepted in 191 symbol blocks
 This data fits into 1912 bit payload of FEC
- ♦ Basic FEC code used is RS(255,239,16)
- 16 bytes of parity are encoded into 16-10b symbols using standard encoder
- ♦ 1 special FEC sync symbol is added
- Total efficiency is 191/208 = 91.8% fixed.

S

S-FEC decoding algorithm

- Synchronization keys on sync symbol
 Error tolerance afforded by implementing
 - hysteresis over several frames (see G.975)
- Data+Parity block is then run through RS decoder
- Resulting corrected data is handed up to PCS layer as if nothing happened

Notable differences from F-FEC

- FEC sublayer is unaware of frame boundaries and special codes
- FEC sublayer does not have to implement shortened last codeword (SLCW)
 - FEC carries over from one frame to another
 - Simpler and more efficient
 - Upstream could use SLCW at end of burst, or could require every burst to be an integral number of blocks
- PCS special codes are protected by strong FEC, not by lengthy symbol sequences

– Higher and more deterministic efficiency

Rate adjustment

- ♦ There are two options either will work
- PMA/PMD rate increase
 - Has precedent in G.975 work
 - Maintains apparent line rate
- ♦ MAC rate decrease
 - Has precedent in 10 GbE work
 - Maintains same PMD and PMA layers

Summary

- Stream-based FEC is simple and effective
 - It is completely transparent to all signaling
 - It has a higher and constant efficiency
 - It is simpler to implement
 - It provides complete and equal protection to every bit of the Ethernet frame