
EPON Layering

Layering Requirements

- Architecture should guarantee zero jitter below MPCP
- Support of multiple LLIDs per ONU
- Ability to grant per ONU
- Ability of multiple LLIDs transmitting in the same grant
- Counters per LLID
- Need to decide if Pause as defined in clause 31 is a requirement

Layering Architecture

- Use of standard interfaces
- MPCP as a single control layer with global view of the system
- MAC with no modifications
- New layers use standard interfaces
- Security below MAC to include in the encryption MAC addresses and FCS
- Define the new management entities for the added functionality

MPCP needs additions in shaded areas

OLT Upstream View

Link Management

- OLT MAC counters are udpated for global state
- Independent LLID counters can be supported if desired
- For some counters, the sum of LLID counters does not equate to OLT counter
 - If error in the tag, LLID is not known

Demultiplexing

- Since there is only one MAC, frame goes up the stack
- The tag is stripped and information is stored in a variable (similar to the laser control signal)

- The MAC passes up to MPCP
- MPCP processes REPORT frames
- MPCP passes the frames to the appropriate LLID interface

OLT Downstream View

Link Management

- OLT MAC counters are udpated for global state
- Independent LLID counters can be supported if desired
- In this case, the sum of LLID counters does equate to OLT counter

• Arbitration

- At a given time only one entity of MAC control is enabled transmission. Since there
 is only one MAC control, only one frame is delivered.
- Tag is added based on MAC client entity

- MPCP adds time stamp when frame is passed to MAC
- MPCP generates GATEs with the appropriate tag information (LLID, mode bit)

ONU Upstream View

Link Management

- ONU MAC counters are udpated for global state
- Independent LLID counters can be supported if desired
- In this case, the sum of LLID counters does equate to ONU counter

Demultiplexing

- At a given moment only one ONU is enabled, within the ONU the MAC control enables only one MAC client for transmission.
- Tag is added based on MAC client entity

- MPCP adds time stamp when frame is passed to MAC
- MPCP generates REPORTs with the appropriate tag information (LLID, mode bit)

ONU Downstream View

Link Management

- ONU MAC counters are udpated for global state
- Independent LLID counters can be supported if desired
- For some counters, the sum of LLID counters does not equate to ONU counter
 - A broadcast frame can be sent once but is received by all LLIDs

Demultiplexing

- Frame is dropped if LLID does not exist in ONU
- Tag is stripped
- Frame is forwarded to the appropriate client based on LLID

- The MAC passes up the frame to MPCP
- MPCP processes GATE frames
- MPCP passes the frames to the appropriate LLID interface

Summary

- An architecture design that offers a global view for the MPCP to control the PON
- It can be specified with no changes in service interface

It supports

- A single MAC control layer to collect and distribute information from/to the entire PON
- -ONU granting with multiple LLIDs sharing the same burst
- Management of ONU and OLT as global entities
- Management of LLIDs as individual entities
- Accurate management counters

Decisions

- Decide Functionality
- Decide multiplexing Layering
- Decide Tagging operation

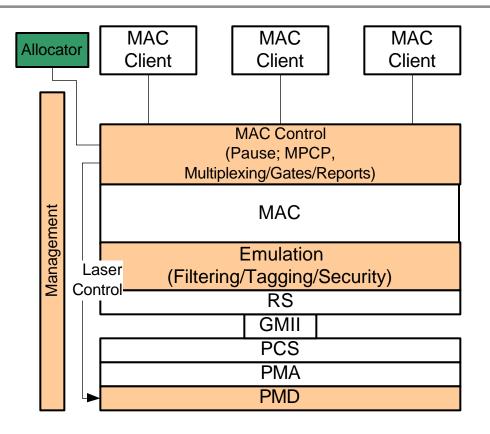
Functionality

- Support of granting per ONU
- Support of counters per LLID
- Support of counters per ONU
- Support of pause per LLID
- Support of pause per ONU

Multiplexing Layering

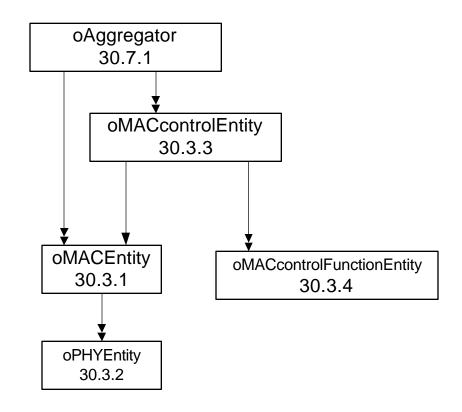
Above MAC-control

 A problem if MAC-control is extended to generate frames without MACclient intervention

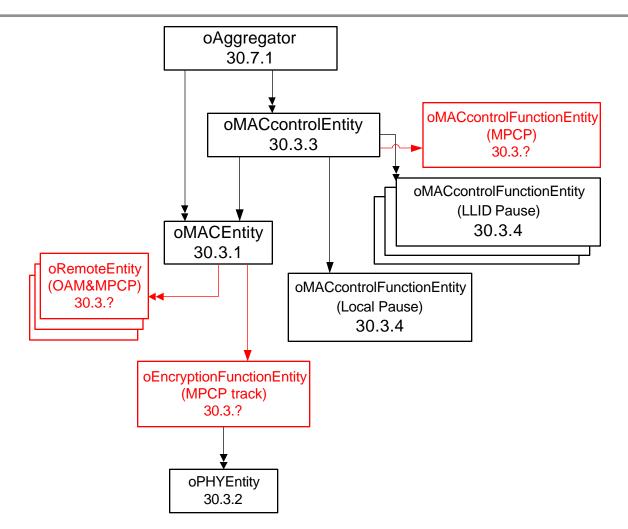

Below MAC-control

- Guarantees that no frames are generated below

Inside MAC-control


- Arbitrates MAC-clients and order of execution of MAC-control functions

Proposed Multiplexing Layering


 All MPCP functions (including multiplexing) defined as new MAC control functions

Clause 30: Current Specification

Fig. 30-3 Ethernet Spec 2000

Clause 30: Additions

Added objects shown in red. At least an entity of each object is needed in both layering approaches

IEEE 802.3 Ethernet in the First Mile – Vancouver July 2002

Tagging Operation (1)

- The baseline attaches a tag to a frame in the preamble. Several mechanisms to internally pass tag information across layers within a device:
- Option 1: Similar to Laser control signal
 - Define registers and decide who writes and reads them
 - TxLLID, TxEncOn, TxEncIndex, written by MAC-control and seen by all lower layers
 - RcvLLID, RcvEncOn, RcvEncIndex written by RS layer and seen by all upper layers
- Option 2: Let information travel with frame across layers using existing interface
 - The first few bytes of the msdu can be fields used for the tag
 - CRC is computed including this tag in the middle of the frame
 - CRC is recompute and replaced at the RS without considering the tag information
- Option 3: Let information travel with frame across layers by extending existing interface
 - Add a tag field to TransmitFrame, ReceiveFrame to pass information from MAC control to RS
 - MAC only needs to transparently pass this information

Tagging Operation (2)

Option 4: Use of multiple MACs

 Valid as long as we can have a MAC for each different tag value: LLID, bit mode, encryption fields

• Option 5: Pass tag with a new Ethertype

- Implies an Increase of MaxFrameSize

Option 6: Combinations

- Maintain LLID and bit mode in preamble with one option 1-4 and additional fields such as encryption in an EtherType
- Still requires increase of MaxFrameSize but keeps flexibility

Recommendations

• Functionality

- Support granting per ONU
- Support counters per LLID
- Support counters per ONU
- Support pause per LLID
- Support pause per ONU

Multiplexing layer

- A function within MAC-control

Tagging mechanism

- Depends on other decisions and functionality
- Recommend: Use Option 1 for information in preamble and define a PON-tag EtherType for additional functionality

Motion: Multiplexing Layer

 Adopt sala_general_1_0702.pdf slides 2-8 as the baseline for MPCP multiplexing layering