Current Transceiver Specification (Power and Sensitivity)

Name	Power Budget (dB)	Transmitter Power (dBm)	Receiver Sensitivity (dBm)	Possible LD/PD Combination	Estimated Average OFE Cost
1000Base-PX10-D	21	-3 to +2	-24	Medium DFB/APD	1.5 X
1000Base-PX10-U	23	-1 to +4	-24	High power FP/APD	X
1000Base-PX20-D	26	+2 to +7	-24	High power DFB/APD	1.7 X
1000Base-PX20-U	26	-1 to +4	-27	High power FP/APD	X

Note: The cost will be 0.5 X lower if the PIN is applied to replace the APD. But the yield will be an issue in volume production.

Suggested Transceiver Specification (Power and Sensitivity)

Name	Power Budget (dB)	Transmitter Power (dBm)	Receiver Sensitivity (dBm)	Possible LD/PD Combination	Estimated OFE Average Cost
1000Base-PX10-D	21	-7 to -2	-28	DFB/APD	1.4 X
1000Base-PX10-U	23	-5 to 0 $($ Same as ITU G.957 STM-16)	-28	FP/APD	0.85 X
1000Base-PX20-D	26	-2 to +3 (Same as ITU G.957 STM-16)	-28	Medium power DFB/APD	1.5 X
1000Base-PX20-U	26	-2 to +3	-28	Medium power FP/APD	0.9 X

Note: The average cost saving will be about 0.15 X for each transceiver, plus the power dissipation of the transmitter will be lower due to the lower driving current.

